Explanation:
The given data is as follows.
= 286 kJ = 
= 286000 J
,

Hence, formula to calculate entropy change of the reaction is as follows.

= ![[(\frac{1}{2} \times S_{O_{2}}) - (1 \times S_{H_{2}})] - [1 \times S_{H_{2}O}]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20S_%7BO_%7B2%7D%7D%29%20-%20%281%20%5Ctimes%20S_%7BH_%7B2%7D%7D%29%5D%20-%20%5B1%20%5Ctimes%20S_%7BH_%7B2%7DO%7D%5D)
= ![[(\frac{1}{2} \times 205) + (1 \times 131)] - [(1 \times 70)]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20205%29%20%2B%20%281%20%5Ctimes%20131%29%5D%20-%20%5B%281%20%5Ctimes%2070%29%5D)
= 163.5 J/K
Therefore, formula to calculate electric work energy required is as follows.
= 
= 237.277 kJ
Thus, we can conclude that the electrical work required for given situation is 237.277 kJ.
Answer:
(B). it's metallic bonding
Answer:
[A]²
Explanation:
Since the formation is independent of D, D is 0 order.
Since a quadruples when it is doubled it can be written as
2A^X= 4
To find the unknown power we can assume A= 1 to make the math simple. So When a = 2 (Because you doubled it) raised to X power it will equal 4
so the unknown power is 2
Making the rate law
[a]²[b]⁰
or simply just
[A]²
<span>The first method to determine the chemical composition of a substance in space was using light. By determining red shift in the observed spectrum of light they could determine the elements they were observing. Different elements change the way light behaves and from this scientists can determine the makeup of things such as stars and nebulas.</span>
Answer:
The average pressure in the container due to these 75 gas molecules is 
Explanation:
Here Pressure in a container is given as

Here
- P is the pressure which is to be calculated
- ρ is the density of the gas which is to be calculated as below

Here
mass is to be calculated for 75 gas phase molecules as

Volume of container is 0.5 lts
So density is given as

is the mean squared velocity which is given as

Here RMS is the Root Mean Square speed given as 605 m/s so

Substituting the values in the equation and solving

So the average pressure in the container due to these 75 gas molecules is 