The answer is the first one, Xe
Metals :-
Group 1A - Alkali metals ( highly reactive metals)
Non-metals :-
Group 17 - Halogens ( highly reactive non-metals )
I think it’s “number” and “type”
First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min
0.447 is the mole fraction of Nitrogen in this mixture.
mole fraction of nitrogen= moles of nitrogen/total moles
mole fraction of nitrogen=0.85/1.90
mole fraction of nitrogen=0.447
The product of the moles of a component and the total moles of the solution yields a mole fraction, which is a unit of concentration measurement. Because it is a ratio, mole fraction is a unitless statement. The sum of the components of the mole fraction of a solution is one. In a mixture of 1 mol benzene, 2 mol carbon tetrachloride, and 7 mol acetone, the mole fraction of the acetone is 0.7. This is computed by dividing the sum of the moles of acetone in the solution by the total number of moles of the solution's constituents:
To know more about mole fraction visit : brainly.com/question/8076655
#SPJ4