Answer:
El microscopio y el descubrimiento de microorganismos. Antonie van Leeuwenhoek (1632-1723) fue una de las primeras personas en observar microorganismos, utilizando un microscopio de su propio diseño, e hizo una de las contribuciones más importantes a la biología. Robert Hooke fue el primero en usar un microscopio para observar seres vivos.
Answer:
Explanation:
Displacement is the shortest distance or path between two points.
1) Displacement = √(36² + 45²) = 57.63 miles
2) Displacement = √(100² + 500²) = 509.9 meters
3) Displacement = √(60² + 40²) = 72.11 miles
4) Displacement = √(700² + 500²) = 860.23 miles
5) Displacement = 300 - 300 = 0 miles
6) Displacement = 200 + 100 = 300 miles
7) Displacement = √(650² + 650²) = 919.24 miles
8) Yes, since a distance is moved in a direction
Answer:
ΔV=0.484mV
Explanation:
The potential difference across the end of conductor that obeys Ohms law:
ΔV=IR
Where I is current
R is resistance
The resistance of a cylindrical conductor is related to its resistivity p,Length L and cross section area A
R=(pL)/A
Given data
Length L=3.87 cm =0.0387m
Diameter d=2.11 cm =0.0211 m
Current I=165 A
Resistivity of aluminum p=2.65×10⁻⁸ ohms
So
ΔV=IR

ΔV=0.484mV
Answer:
a) a = 3.72 m / s², b) a = -18.75 m / s²
Explanation:
a) Let's use kinematics to find the acceleration before the collision
v = v₀ + at
as part of rest the v₀ = 0
a = v / t
Let's reduce the magnitudes to the SI system
v = 115 km / h (1000 m / 1km) (1h / 3600s)
v = 31.94 m / s
v₂ = 60 km / h = 16.66 m / s
l
et's calculate
a = 31.94 / 8.58
a = 3.72 m / s²
b) For the operational average during the collision let's use the relationship between momentum and momentum
I = Δp
F Δt = m v_f - m v₀
F =
F = m [16.66 - 31.94] / 0.815
F = m (-18.75)
Having the force let's use Newton's second law
F = m a
-18.75 m = m a
a = -18.75 m / s²
Answer:
μ = 0.37
Explanation:
For this exercise we must use the translational and rotational equilibrium equations.
We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive
let's write the rotational equilibrium
W₁ x/2 + W₂ x₂ - fr y = 0
where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances
cos 60 = x / L
where L is the length of the ladder
x = L cos 60
sin 60 = y / L
y = L sin60
the horizontal distance of man is
cos 60 = x2 / 7.0
x2 = 7 cos 60
we substitute
m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0
fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60
let's calculate
fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)
fr = (735 + 2450) / 8.66
fr = 367.78 N
the friction force has the expression
fr = μ N
write the translational equilibrium equation
N - W₁ -W₂ = 0
N = m₁ g + W₂
N = 30 9.8 + 700
N = 994 N
we clear the friction force from the eucacion
μ = fr / N
μ = 367.78 / 994
μ = 0.37