Your answer is c holding a brick doesn't contain movement, but energy to grip on it.
hoped it helped!!!
Short-duration spacecraft typically have one backup system and carry their own supply of oxygen. A large portion of the required oxygen is produced on long-duration missions, such as the International Space Station (ISS), which has been in orbit since 1998. Different sources provide the oxygen utilized on the ISS. The water electrolyzer is the primary source of metabolic oxygen. As an alternative to the electrolyzer, oxygen candles (also known as SFOGs) can produce metabolic oxygen. Additionally, oxygen is carried up whenever a cargo ship docks and stored in two tanks on the ISS Airlock. The electrolyzer electrolyzes water to create oxygen by running an electric current through it. Since water is a poor electrical conductor by itself, a little quantity of common salt is dissolved in the water to improve its electrical conductivity. Water is split into hydrogen and oxygen throughout the process.
We must keep in mind that oxygen by itself cannot be inhaled; it must be combined in the proper ratio with nitrogen to make it breathable. Two tanks aboard the ISS are used to store nitrogen, and the cargo ships that travel by from time to time also transport nitrogen cylinders. Through the electrical grid of the station, the solar panels on the station supply the necessary electricity for the oxygen generators. The majority of the required water is transported to the station by cargo supply ships. Condensers, which draw water vapor even from the station's air, ensure that not a drop of water is wasted. Using the proper equipment, water is also recycled from the astronauts' urine.
Through a suitable vent, the hydrogen gas produced during the electrolysis process is released into space. Pressurized tanks at the airlock nodes at the space station are pumped with oxygen when the cargo vehicles arrive there. Pressurized tanks there are also pumped with nitrogen. It goes without saying that the station's atmospheric controls combine the gases in the right amounts for the atmosphere of Earth and then distribute the combination throughout the cabin. The production of oxygen in space is impossible.
Answer:
1.74 m/s
Explanation:
From the question, we are given that the mass of the an object, m1= 2.7 kilogram(kg) and the mass of the can,m(can) is 0.72 Kilogram (kg). The velocity of the mass of an object(m1) , V1 is 1.1 metre per seconds(m/s) and the velocity of the mass of can[m(can)], V(can) is unknown- this is what we are to find.
Therefore, using the formula below, we can calculate the speed of the can, V(can);
===> Mass of object,m1 × velocity of object, V1 = mass of the can[m(can)] × velocity is of the can[V(can)].----------------------------------------------------(1).
Since the question says the collision was elastic, we use the formula below
Slotting in the given values into the equation (1) above, we have;
1/2×M1×V^2(initial velocity of the first object) + 1/2 ×M(can)×V^2(final velocy of the first object)= 1/2 × M1 × V^2 m( initial velocity of the first object).
Therefore, final velocity of the can= 2M1V1/M1+M2.
==> 2×2.7×1.1/ 2.7 + 0.72.
The velocity of the can after collision = 1.74 m/s
<h3><u>Answer;</u></h3>
a) 5.00 x 10^8 J
<h3><u>Explanation;</u></h3>
The work done to move the sailboat is calculated through the equation;
W = F x d
where F is force and d is the distance.
Substituting the known values from the given above,
W = (5.00 x 10⁴ N)(10 km)(1000 m/ 1km)
= 5.00 x 10⁸ J
Thus, the work done is <u>5.00 x 10⁸Joules</u>
When hard stabilization structures such as groins are used to stabilize a shoreline, the change in the longshore current results <u>deposition of sediment. </u>
On the upcurrent side of the barrier, sediment is deposited as the longshore current slows.
What is Hard stabilization?
- Hard stabilization is the prevention of erosion through the use of artificial barriers.
- Other hard stabilization structures, such as breakwaters and seawalls, are built parallel to the beach to protect the coast from the force of waves.
- Hard stabilization structures, such as groins, are built at right angles to the shore to prevent the movement of sand down the coast and maintain the beach.
- These constructions are made to last for many years, but because they detract from the visual splendor of the beach, they are not always the ideal answer.
- Additionally, they affect the habitats and breeding sites of native shoreline species, interfering with the ecosystem's natural processes.
Learn more about the Hard stabilization with the help of the given link:
brainly.com/question/16022736
#SPJ4