Explanation:
It is given that,
Mass of the rim of wheel, m₁ = 7 kg
Mass of one spoke, m₂ = 1.2 kg
Diameter of the wagon, d = 0.5 m
Radius of the wagon, r = 0.25 m
Let I is the the moment of inertia of the wagon wheel for rotation about its axis.
We know that the moment of inertia of the ring is given by :


The moment of inertia of the rod about one end is given by :

l = r


For 6 spokes, 
So, the net moment of inertia of the wagon is :


So, the moment of inertia of the wagon wheel for rotation about its axis is
. Hence, this is the required solution.
Let us assume the upstream rowing rate of Alicia = x
Let us assume the downstream rowing rate of Alicia = y
We already know that
Travelling time = Distance traveled/rowing rate
Then
6/(x + 3) = 4/x
6x = 4x + 12
6x - 4x = 12
2x = 12
x = 6
Then
Rowing rate of Alicia going upstream = 6 miles per hour
Rowing rate of Alicia going downstream = 9 miles per hour.
Answer:
I think it's the most important part in this
Answer:v=3.28 m/s
Explanation:
Given
mass of rock 
diameter of circle 
radius 
At highest Point

At highest Point N=0 because mass is just balanced by centripetal Force
thus 



