The number of moles of the magnesium (mg) is 0.00067 mol.
The number of moles of hydrogen gas is 0.0008 mol.
The volume of 1 more hydrogen gas (mL) at STP is 22.4 L.
<h3>
Number of moles of the magnesium (mg)</h3>
The number of moles of the magnesium (mg) is calculated as follows;
number of moles = reacting mass / molar mass
molar mass of magnesium (mg) = 24 g/mol
number of moles = 0.016 g / 24 g/mol = 0.00067 mol.
<h3>Number of moles of hydrogen gas</h3>
PV = nRT
n = PV/RT
Apply Boyle's law to determine the change in volume.
P1V1 = P2V2
V2 = (P1V1)/P2
V2 = (101.39 x 146)/(116.54)
V2 = 127.02 mL
Now determine the number of moles using the following value of ideal constant.
R = 8.314 LkPa/mol.K
n = (15.15 kPa x 0.127 L)/(8.314 x 290.95)
n = 0.0008
<h3>Volume of 1 mole of hydrogen gas at STP</h3>
V = nRT/P
V = (1 x 8.314 x 273) / (101.325)
V = 22.4 L
Learn more about number of moles here: brainly.com/question/13314627
#SPJ1
Electrons fill the electron orbitals (s, p, d, or f) starting from the lowest energy level going to the highest energy level.
I hope this helps. let me know if you need more information such as what the
NH3-The limiting reactant is the reactant that get completely used up in a reaction
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.