When the car speeds up, slows down, or goes around a curve,
passengers need a force applied to them to make them do the
same thing, otherwise they won't keep up with the car.
The force on the passenger is applied by means of friction between
the upholstery and the seat of his pants, and also by the seat-back
or his seat-belt.
Answer:
The answer is True
Explanation:
Statistical Multiplexing is considered an example of communication link sharing which makes it comparable to DBA (Dynamic Bandwidth Allocation). Here, communication channels are broken down into data streams to optimize the communication process.
In Statistical Time-division Multiplexing, time slots are allocated to data streams for communication optimization. This method makes sure that no time slot or bandwidth is wasted.
Hence, the sum of combined circuits must not be equal to the capacity of the circuit to work effectively.
Answer:
A) Spherically symmetric about a point in the constellation Sagittarius and concentrated in that direction
Explanation:
The globular clusters are present mainly in the direction of Sagittarius with the center of the system of globular cluster being measured as a spherical cluster cloud such that the center of the Milky Way can be taken as being in the Sagittarius constellation
** Missing info: Lines per mm = 500 **
Ans: The wavelength is = λ = 1414.21 nm
Explanation:
The formula for diffraction grading is:
dsinθ = mλ --- (1)
Where
d = 1/lines-per-meter = (1/500)*10^-3 = 2 * 10^-6
m = order = 1
λ = wavelength
θ = 45°
Plug in the values in (1):
(1) => 2*10^-6*sin(45°) = (1)λ
=> λ = 1414.21 nm
Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.