Answer:
It has two sigma bonds ( the single bonds between each H and C) plus one pi bond and one sigma bond that consitute the double bond between C and O. It contains three covalent bonds, one . Hydrogen Bond Donor Count: 0: Computed by Cactvs 3.4.
Explanation:
Hope it helps you!
When wood id burnt, 30 grams of ash are formed due to the chemical changes that occurred.
The missing 370 grams are evaporated into the air where they form other particles and substances.
The final destination to where some of the electrons go to at the end of cellular respiration would be D. Oxygen. Assuming that this aerobic cellular respiration, the final electron acceptor is that of oxygen.
Answer:
At equilibrium:
[H2] = 0.005 M
[Br2] = 0.105 M
[HBr] = 0.189 M
Explanation:
H2(g) + Br2(g) ⇄ 2HBr
an "x" value will be used from reactant to produced "2x"
so at equilibrium:
[H2] = 0.1 - x
[Br2] = 0.2 - x
[HBr] = 2x
we know that Kc=[HBr]²/[H2][Br2]
Thus 62.5 = (2x)²/(0.1-x)(0.2-x)
this generate a quadratic equation: 58.5x² - 18.75x + 1.25 = 0
the x₁ = 0.23 x₂ = 0.09457
we pick 0.09457 because the two reactants can not make more than what they have. x₁ is higher than both initial reactant concentration
Then we substitute the "x₂" value at equilibrium:
[H2] = 0.1-0.09457 = 0.005 M
[Br2] = 0.2-0.09457 = 0.105 M
[HBr] = 2*0.09457 = 0.189 M
Answer:
Height and mass
Explanation:
The potential energy of a body is the energy due to the position of a body.
It is mathematically expressed as:
Potential energy = m g h
m is the mass of the body
g is the acceleration due to gravity
h is the height of the body
Acceleration due to gravity on the earth surface is a constant.
As mass and height of a body increases, the acceleration due to gravity will also increase.