Explanation:
Scientific evidences abound of the occurrence of plastic pollution, from mega- to nano-sized plastics, in virtually all matrixes of the environment. Apart from the direct effects of plastics and microplastics pollution such as entanglement, inflammation of cells and gut blockage due to ingestion, plastics are also able to act as vectors of various chemical contaminants in the aquatic environment. This paper provides a review of the association of plastic additives with environmental microplastics, how the structure and composition of polymers influence sorption capacities and highlights some of the models that have been employed to interpret experimental data from recent sorption studies. The factors that influence the sorption of chemical contaminants such as the degree of crystallinity, surface weathering, and chemical properties of contaminants. and the implications of chemical sorption by plastics for the marine food web and human health are also discussed. It was however observed that most studies relied on pristine or artificially aged plastics rather than field plastic samples for studies on chemical sorption by plastics.
I only got 50 points (which is not 100). :-)
Look at the graph. At 80 °C, about 38 g of solute is able to dissolve, and that’s for ever 100 g of water. That means that for every 150 grams of water, 57 grams of solute can dissolve (38/2 = 19 + 38 = 57 g) at 80 °C. Since 57 g is greater than 55 g, all for he sodium chloride should dissolve in 150 g of water at 80 °C - you can put all of that into a “mathematical explanation”.
Any buffer exists in this equilibrium
HA <=>

In a buffer, there is a large reservoir of both the undissociated acid (HA) and its conjugate base (

)
When a strong acid is added, it reacts with the large reservoir of the conjugate base (

) forming a salt and water. Since this large reservoir of the conjugate base is used, the ph does not alter drastically, but instead resist the pH change.
The correct answer is Gamma decay. It happens after beta and alpha decay
because what's left after those two can enter a new process of gamma
decay. This releases gamma rays which is a more complex term for the
photons that you mentioned before. These rays can be dangerous for
humans so care not to get caught in them.
Answer:
6.4 × 10^-10 M
Explanation:
The molar solubility of the ions in a compound can be calculated from the Ksp (solubility constant).
CaF2 will dissociate as follows:
CaF2 ⇌Ca2+ + 2F-
1 mole of Calcium ion (x)
2 moles of fluorine ion (2x)
NaF will also dissociate as follows:
NaF ⇌ Na+ + F-
Where Na+ = 0.25M
F- = 0.25M
The total concentration of fluoride ion in the solution is (2x + 0.25M), however, due to common ion effect i.e. 2x<0.25, 2x can be neglected. This means that concentration of fluoride ion will be 0.25M
Ksp = {Ca2+}{F-}^2
Ksp = {x}{0.25}^2
4.0 × 10^-11 = 0.25^2 × x
4.0 × 10^-11 = 0.0625x
x = 4.0 × 10^-11 ÷ 6.25 × 10^-2
x = 4/6.25 × 10^ (-11+2)
x = 0.64 × 10^-9
x = 6.4 × 10^-10
Therefore, the molar solubility of CaF2 in NaF solution is 6.4 × 10^-10M