Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M
An isotope is the vary of neutrons in an element, causing its atomic mass to change. While an ion is a charged atom that bonds to be stable.
Because if they are submerged in the solvent, they would dissolve! This would prevent them from seperating and not allow you to actually record anything
The answer for the question is c.
Answer:
3.824 atm
Explanation:
From the ideal gas equation
P = mRT/MW × V
m is mass of testosterone = 12.9 g
R is gas constant = 82.057 cm^3.atm/mol.K
T is temperature of benzene solution = 298 K
MW is molecular weight of testosterone = 288.40 g/mol
V is volume of benzene solution = 286 ml = 286 cm^3
P = 12.9×82.057×298/288.4×286 = 3.824 atm