Given that the rate constant is 4.0×10−4 m−1 s−1 at 25.0 ∘c and that the rate constant is 2.6×10−3 m−1 s−1 at 42.4 ∘c, what is t
he activation energy in kilojoules per mole? express your answer to three significant figures and include the appropriate units.
1 answer:
So here's how you find the answer:
Given: (rate constants)
K₁ = 4.0 x 10⁻⁴ M⁻¹s⁻¹.
T₁ = 25.0 C = 293 K.
k₂ = 2.6 x10⁻³ M⁻¹s⁻¹.
T₂ = 42.4 C = 315.4 K.
R = 8,314 J/K·mol.
Use the equation:
ln(k₁/k₂) = Ea/R (1/T₂ - 1/T₁).
Transpose:
Ea = R·T₁·T₂ / (T₁ - T₂) · ln(k₁/k₂)
Substitute within the given transposed equation:
<span>Ea = 8,314 J/K·mol · 293 K · 315.4 K ÷ (293 K - 315.4 K) · ln (4.0 x 10⁻⁴ M⁻¹s⁻¹/ 2.6 x 10⁻³ M⁻¹s⁻¹).
</span>
Continuing the solution we get:
<span>Ea = 768315 J·K/mol ÷ (-22,4 K) * (-1.87)
</span>
The value of EA is:
<span>Ea = 64140.58 J/mol ÷ 1000 J/kJ = 64.140 kJ/mol.</span>
You might be interested in
add all the number and find the average then subtract the mass defect and then you will get your answer
If 2.34 moles of Mg react with 3.56 moles of l2 and 1.76 moles of Mgl2 form, what is the percent yield?
The name is Aluminum Cloride
Size, speed and angle of the falling object determine the size shape and complexity of the resulting crater