The atomic mass of a certain element is summation of the product of the decimal equivalent of the percentage abundance and the given atomic mass of each of the isotope. If we let x be the percentage abundance of the 86 amu-isotope then, the second one is 1-x such that,
x(86) + (1 - x)(90) = 87.08
The value of x from the equation is 0.73. This value is already greater than 0.5. Thus, the isotope with greatest abundance is that which is 86 amu.
Answer:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
Explanation:
To establish the oxidation number of nitrogen in each compound, we know that the sum of the oxidation numbers of the elements is equal to the charge of the species.
Nitrite ion (NO₂⁻)
1 × N + 2 × O = -1
1 × N + 2 × (-2) = -1
N = +3
Nitrous oxide (NO)
1 × N + 1 × O = 0
1 × N + 1 × (-2) = 0
N = +2
Nitrate ion (NO₃⁻)
1 × N + 3 × O = -1
1 × N + 3 × (-2) = -1
N = +5
Ammonia (NH₃)
1 × N + 3 × H = 0
1 × N + 3 × (+1) = 0
N = -3
Nitrogen gas (N₂)
2 × N = 0
N = 0
The order of increasing nitrogen oxidation state is:
C. ammonia, nitrogen gas, nitrous oxide, nitrite, nitrate
The molecules in warm air are more expanded, move more rapidly and take up more room than in cold air. The expansion and movement of molecules makes it less dense, thus it rises above the cold air. Cold air molecules are more compressed, making them more still and packed together, thus making it more dense than warm air.
<span>Mass Number = (Atomic Number) + (Number of Neutrons) so you solve for the Number of Neutrons and you get:
Number of Neutrons = (Mass number) - (Atomic Number)
Mass Number equals protons plus neutrons, round atomic weight to nearest whole number
Atomic Number equals number of Protons</span>
Answer:
A
Explanation:
all the other answers are wrong or not applicable. hope this helps :)