Answer: 1.67 kg
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.

Q = Heat absorbed=
=
(1kJ=1000J)
m= mass of substance = ?
c = specific heat capacity = 
Change in temperature ,
Putting in the values, we get:

(1kg=1000g)
Thus the mass (in kg) of the copper sample is 1.67
Answer:
1.52atm is the pressure of the gas
Explanation:
To solve this question we must use the general gas law:
PV = nRT
<em>Where P is pressure in atm = Our incognite</em>
<em>V is volume = 50.5L</em>
<em>n are moles of gas = 3.25moles</em>
<em>R is gas constat = 0.082atmL/molK</em>
<em>And T is absolute temperature = 288.6K</em>
To solve pressure:
P = nRT / V
P = 3.25mol*0.082atmL/molK*288.6K / 50.5L
P = 1.52atm is the pressure of the gas
Answer:
A
Explanation:
Germanium and Carbon are in the same 14th group.
Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive. Since soft nucleophiles are less strongly solvated than hard nucleophiles, these solvents boost the relative reactivity of soft anions.
<h3>
Ethanol is either a nucleophile or a base.</h3>
The ethanol is a base Because carbocation is an extremely reactive species, a base or nucleophile as weak as ethanol can replace or remove it. SN1 and E1 would not be conceivable without the carbocation or a strong departing group.
<h3>How do solvents impact anionic nucleophile's reactivity?</h3>
In polar aprotic solvents, nucleophilic substitution reactions of anionic nucleophiles often proceed more quickly. The normal relative reactivity order in such solvents (like DMSO)is Anions are solvated in protic hydrogen-bonding solvents (such as ethanol). Consequently, nucleophiles are less reactive.
Learn more about nucleophiles here:-
brainly.com/question/27127109
#SPJ4
There is no chemical change