Hi there!
Great question!
Basketballs have air inside them. A special pump is used to insert the air. That's why you can lift the basketballs off the ground easily. If it was a solid, though, you'd hardly be able to lift the ball up! Basketballs can float, too, because anything with air inside can float. If it were solid, it would sink in the water easily.
Hope this helps! :D
The answer is B. Friction is going to the RIGHT because friction works against where you are trying to go
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
1.3 A
If a clock expends 2 W of power from a 1.5 V battery, what amount of current is supplying
the clock?
solution
as we know
p=vi
i=p/v
=2/1.5
=1.3A