3.5 moles of ammonia (NH₃) are produced
Explanation:
We have the following chemical reaction where hydrogen (H₂) reacts with nitrogen (N₂) to produce ammonia (NH₃):
3 H₂ + N₂ → 2 NH₃
number of moles = mass / molecular weight
number of moles of N₂ = 48.97 / 28 = 1.75 moles
We see from the chemical reaction that 1 mole of N₂ will react with 3 moles of H₂, so 1.75 moles of nitrogen will react with 3 × 1.75 = 5.25 moles of H₂. We have 7.32 moles of H₂, a quantity more of what is needed, so the limiting reactant is N₂.
Knowing this we devise the following reasoning:
if 1 mole of N₂ produces 2 moles of NH₃
then 1.75 moles of N₂ produces X moles of NH₃
X = (1.75 × 2) / 1 = 3.5 moles of NH₃
Learn more about:
limiting reactant
brainly.com/question/7144022
#learnwithBrainly
D. Yep, D is the answer, alright.
Answer:
[CO2] > [N2] > [He]
Explanation:
The relative concentration of CO2, N2 and He depends on the solubility of each gas in water. The more soluble in water a gas is, the greater its concentration in aqueous solution.
Among the gases listed, CO2 is most soluble in water hence it is expected to have the greatest concentration in solution followed by N2. Helium gas is insoluble in water hence it has the least concentration in the aqueous solution.
Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Answer:
Pure substance B) Consists of a single element or type of compound.
Homogeneous A) Mixture that has its different components mixed evenly within the substance.
Heterogeneous D) Mixture that has its different components mixed unevenly within the substance.
Solution C) Liquid homogeneous mixture in which the solute is distributed evenly within the solvent.
Explanation:
Pure substances are a form of matter with definite constant composition and distinct properties. They consist of a single element or type of compound, as can be seen in its formula. Na, O₂, NaCl and H₂O are examples of pure substances.
When 2 or more pure substances are mixed together they form a mixture. If the mixture has its different components mixed <u>evenly</u> within the substance it is a homogeneous mixture. Whereas if the mixture has its different components mixed <u>unevenly</u> within the substance it is a heterogeneous mixture. The different parts observable in a heterogeneous mixture are known as phases.
In liquid homogeneous mixtures, we can recognize one or more substances that are in lower proportions (solutes) and one substance that is in greater proportion (solvent). This kind of mixture is known as a solution.