A closed, rectangular-faced box with a square base is to be constructed using only 36 m2 of material. What should the height h a
nd base length b of the box be so as to maximize its volume
1 answer:
Answer:
m
Step-by-step explanation:
Let
Bas length of box=b
Height of box=h
Material used in constructing of box=36 square m
We have to find the height h and base length b of the box to maximize the volume of box.
Surface area of box=![2b^2+4bh](https://tex.z-dn.net/?f=2b%5E2%2B4bh)
![2b^2+4bh=36](https://tex.z-dn.net/?f=2b%5E2%2B4bh%3D36)
![b^2+2bh=18](https://tex.z-dn.net/?f=b%5E2%2B2bh%3D18)
![2bh=18-b^2](https://tex.z-dn.net/?f=2bh%3D18-b%5E2)
![h=\frac{18-b^2}{2b}](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B18-b%5E2%7D%7B2b%7D)
Volume of box, V=![b^2h](https://tex.z-dn.net/?f=b%5E2h)
Substitute the values
![V=b^2\times \frac{18-b^2}{2b}](https://tex.z-dn.net/?f=V%3Db%5E2%5Ctimes%20%5Cfrac%7B18-b%5E2%7D%7B2b%7D)
![V=\frac{1}{2}(18b-b^3)](https://tex.z-dn.net/?f=V%3D%5Cfrac%7B1%7D%7B2%7D%2818b-b%5E3%29)
Differentiate w. r.t b
![\frac{dV}{db}=\frac{1}{2}(18-3b^2)](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdb%7D%3D%5Cfrac%7B1%7D%7B2%7D%2818-3b%5E2%29)
![\frac{dV}{db}=0](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdb%7D%3D0)
![\frac{1}{2}(18-3b^2)=0](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%2818-3b%5E2%29%3D0)
![\implies 18-3b^2=0](https://tex.z-dn.net/?f=%5Cimplies%2018-3b%5E2%3D0)
![\implies 3b^2=18](https://tex.z-dn.net/?f=%5Cimplies%203b%5E2%3D18)
![b^2=6](https://tex.z-dn.net/?f=b%5E2%3D6)
![b=\pm \sqrt{6}](https://tex.z-dn.net/?f=b%3D%5Cpm%20%5Csqrt%7B6%7D)
The negative value of b is not possible because length cannot be negative.
Again differentiate w.r.t b
![\frac{d^2V}{db^2}=-3b](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5E2V%7D%7Bdb%5E2%7D%3D-3b)
At
![\frac{d^2V}{db^2}=-3\sqrt{6}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5E2V%7D%7Bdb%5E2%7D%3D-3%5Csqrt%7B6%7D%3C0)
Hence, the volume of box is maximum at
.
![h=\frac{18-(\sqrt{6})^2}{2\sqrt{6}}](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B18-%28%5Csqrt%7B6%7D%29%5E2%7D%7B2%5Csqrt%7B6%7D%7D)
![h=\frac{18-6}{2\sqrt{6}}](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B18-6%7D%7B2%5Csqrt%7B6%7D%7D)
![h=\frac{12}{2\sqrt{6}}](https://tex.z-dn.net/?f=h%3D%5Cfrac%7B12%7D%7B2%5Csqrt%7B6%7D%7D)
![h=\sqrt{6}](https://tex.z-dn.net/?f=h%3D%5Csqrt%7B6%7D)
m
You might be interested in
![-2^{4} = 16](https://tex.z-dn.net/?f=%20-2%5E%7B4%7D%20%3D%2016)
You're right.
Answer:
9 = X -1 X = 10
Step-by-step explanation:
Add one to both sides
Answer:
The answer to your question is: the height of the light pole is 15 ft.
Step-by-step explanation:
See the picture below
Now, we can do proportions to finds the height of the light pole
![\frac{20}{8} = \frac{x}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B20%7D%7B8%7D%20%3D%20%20%5Cfrac%7Bx%7D%7B6%7D)
Solve for x
x = 6(20) / 8
x = 120 / 8
x = 15 ft
<em>-7 _D_</em>
<em>
_A_</em>
<em>1 _C_</em>
<em>
_B_</em>
<em>_A_
</em>
<em>_B_
</em>
<em>_C_
</em>
<em>_D_
</em>
Answer:
89/16
Step-by-step explanation: