Answer:
When the ball goes to first base it will be 4.23 m high.
Explanation:
Horizontal velocity = 30 cos17.3 = 28.64 m/s
Horizontal displacement = 40.5 m
Time
Time to reach the goal posts 40.5 m away = 1.41 seconds
Vertical velocity = 30 sin17.3 = 8.92 m/s
Time to reach the goal posts 40.5 m away = 1.41 seconds
Acceleration = -9.81m/s²
Substituting in s = ut + 0.5at²
s = 8.92 x 1.41 - 0.5 x 9.81 x 1.41²= 2.83 m
Height of throw = 1.4 m
Height traveled by ball = 2.83 m
Total height = 2.83 + 1.4 = 4.23 m
When the ball goes to first base it will be 4.23 m high.
Answer:
KE = 0.5 * m * v², where: m - mass, v - velocity.
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s 2.
Most of the radiation, however, is absorbed by the earth's surface. ... Every surface on earth absorbs and reflects energy at varying degrees, based on its color and texture. Dark-colored objects absorb more visible radiation; light-colored objects reflect more visible radiation.
Answer:4 times more energy will be striking the childbearing
Explanation:
Because Volume is directly proportional to amplitude of sound. Energy is proportional to amplitude squared. If you triple the amplitude, you multiply the energy by 4
Answer:
let m be the mass of the object, K be the force constant and Fs be the force by the spring on the mass.