Answer:
Explanation:
Gravitational force between two objects having mass m₁ and m₂ at a distance R
F = G m₁ m₂ / R²
Force between baby and father F₁ = 6.67x10⁻¹¹ x 4.1 x 120 / .18²
= 1.01 x 10⁻⁶ N
b )
Force between baby and Jupiter
F₂ = 6.67x10⁻¹¹ x 1.9x 10²⁷ x 4.1 / ( 6.29 x 10¹¹ )²
= 1.31 x 10⁻⁶ N
c )
Ratio = 1.01 / 1.31
= .77
Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^
In telecommunication systems, Carrier frequency is a technical term used to indicate: ... The frequency of the unmodulated electromagnetic wave at the output of a conventional amplitude-modulated (AM-unsupressed carrier), or frequency-modulated (FM), or phase-modulated (PM) radio transmitter.
The law of gravitation states that things closer to the core of gravitation, have a larger force pulling down on them. In relation of you to your desk, you and the desk are both drawn downwards towards the center of gravity.
Answer:
ΔΦ = -3.39*10^-6
Explanation:
Given:-
- The given magnetic field strength B = 0.50 gauss
- The angle between earth magnetic field and garage floor ∅ = 20 °
- The loop is rotated by 90 degree.
- The radius of the coil r = 19 cm
Find:
calculate the change in the magnetic flux δφb, in wb, through one of the loops of the coil during the rotation.
Solution:
- The change on flux ΔΦ occurs due to change in angle θ of earth's magnetic field B and the normal to circular coil.
- The strength of magnetic field B and the are of the loop A remains constant. So we have:
Φ = B*A*cos(θ)
ΔΦ = B*A*( cos(θ_1) - cos(θ_2) )
- The initial angle θ_1 between the normal to the coil and B was:
θ_1 = 90° - ∅
θ_1 = 90° - 20° = 70°
The angle θ_2 after rotation between the normal to the coil and B was:
θ_2 = ∅
θ_2 = 20°
- Hence, the change in flux can be calculated:
ΔΦ = 0.5*10^-4*π*0.19*( cos(70) - cos(20) )
ΔΦ = -3.39*10^-6