Field strength = (15 V) / (4 cm)
Field strength = (15 V) / (0.04 meter)
Field strength = (15/0.04) (volts/meter)
<em>Field strength = 375 volts/meter </em>
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration.
1.)
Fw (weight) = m (mass) · g (gravity, 9.8 m/s²)
Fw = m * 9.81 m/s²
560N = m · 9.81 m/s²
m ≈ 57.08 kg
2.)
d = 350 meters
t = 65 seconds
velocity = d/t
velocity = 350 meters / 65 seconds
velocity ≈ 5.38 meters/sec
3.)
Force = 35N
Distance = 2 meters
Work = Force · Distance
Work = 35N · 2 meters
Work = 70 J
The final temperature is 83 K.
<u>Explanation</u>:
For an adiabatic process,


Given:-



(the gas is monoatomic)

T = 275
0.30
T = 83 K.