During the winter, the Northern Hemisphere tilted away from the sun, receiving solar radiation at more of an angle. <u>This results in colder temperatures and more extreme temperature changes.</u>
The 'formulas' to use are just the definitions of 'power' and 'work':
Power = (work done) / (time to do the work)
and
Work = (force) x (distance) .
Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.
Power = (force x distance) / (time)
From the sheet, we know the power, the distance, and the time. So we can use this one formula to find the force.
Power = (force x distance) / (time)
Multiply each side by (time): (Power) x (time) = (force) x (distance)
Divide each side by (distance): Force = (power x time) / (distance).
Look how neat, clean, and simple that is !
Force = (13.3 watts) x (3 seconds) / (4 meters)
Force = (13.3 x 3 / 4) (watt-seconds / meter)
Force = 39.9/4 (joules/meter)
<em>Force = 9.975 Newtons</em>
Is that awesome or what !
Answer:

Explanation:
Given that

From the diagram

By differentiating with time t

When x= 10 m

θ = 64.53°
Now by putting the value in equation



Therefore rate of change in the angle is 0.038\ rad/s
The tangent looks good.
The curve is a bit crooked, at the 0.9 and 1.
But overall, cool graph.
Answer: This type of questions are called probing questions. The correct option is D.
Explanation:
Probing questions are the type of questions that are asked to investigate an ongoing event. It helps the investigator to know more about what is happening and how to obtain conclusive decisions through the personal opinions of the respondent . For example from the question, Liza wanted to know more about the project updates which was held in the weekly meetings. She asked her employees questions like:
- Why were you late meeting your last deadline?
-Were there external factors that delayed your work?
-Did other coworkers get their part of the assignment to you on time?
- Do you need more help from me?".