In a gear train with two gears, the gear ratio is defined as follows
where

is the angular velocity of the input gear while

is the angular velocity of the output gear.
This can be rewritten as a function of the number of teeth of the gears. In fact, the angular velocity of a gear is inversely proportional to the radius r of the gear:

But the radius is proportional to the number of teeth N of the gear. Therefore we can rewrite the gear ratio also as
Answer:
x component 3.88 y- component 14.488
Explanation:
We have given a vector A which has a magnitude of 15 m/sec which is at 75° counter-clock wise ( anti-clock wise) from x -axis which is clearly shown in bellow figure
Now x-component will be 15 cos75°=3.8822 ( as it makes an angle of 75° with x-axis )
y- component will be 15 sin 75°=14.488
For verification the resultant of x and y component should be equal to 15
So 
Answer:
This is due to a relative decrease in atmospheric pressure in high places.
Explanation:
Given that atmospheric pressure decreases at the higher point or ground, this reduced atmospheric pressure, however, will be unable to contain the Mercury in the barometer tube.
Therefore, at the top of the mountain where the air pressure is low, the barometer reading ultimately goes down.
Hence, the level of mercury falls in a barometer while taking it to a mountain "due to a relative decrease in atmospheric pressure in high places."
15 N = 15 kg m / s² =
= 15 · 1/14.59 slug · 1 / 0.3048 =
= 15 · 0.06854 · 3.24254 =
= 3.33 lb
Answer: 15 N is equal to 3.33 pounds.