Option A is correct. When a person says "<em>I think</em><em> that between an elephant and a monkey that jumped off the cliff, both of them will hit the ground at the same time."</em> the person is stating his Hypothesis
A hypothesis is an explanation proposed or given based on a piece of evidence that is limited.
It is useful at the beginning of an investigation because it serves as the building block for an impending fact or law.
From the statement, we can see that the person is not too sure of the information provided since he "thinks". <em>He said, </em><em>"I think</em><em> that between an elephant and a monkey that jumped off the cliff, both of them will hit the ground at the same time." </em>
<em />
Hence we can conclude that the person is stating a hypothesis.
Law and theory are incorrect because they are already proven facts.
Learn more here: brainly.com/question/6907236
Answer:
<h2>
0.50 m/s</h2><h2>
</h2>
Explanation:
Velocity = distance over time
where distance = 5.20 m
time = 10.4 s.
velocity = <u> 5.20 m </u>
10.4 s.
= 0.50 m/s
I think the correct answers are X2Y and X3Y, X2Y5 and X3Y5, and X4Y2 and X3Y,
for the following reason:
If you look at the combining masses of X and Y in
each of the two compounds,
The first compound contains 0.25g of X combined with
0.75g of Y
so the ratio (by mass) of X to Y = 1 : 3
The second compound contains 0.33 g of X combined with
0.67 g of Y
so the ratio (by mass) of X to Y = 1 : 2
Now, you suppose to prepare each of these two
compounds, starting with the same fixed mass of element Y ( I will choose 12g
of Y for an easy calculation!)
The first compound will then contain 4g of X and 12g
of Y
The second compound will then contain 6g of X and
12g of Y
<span>The ratio which combined
the masses of X and the fixed mass (12g) of Y
= 4 : 6
<span>or 2 : 3 </span>
So, the ratio of MOLES of X which combined with the
fixed amount of Y in the two compounds is also = 2 : 3 </span>
The two compounds given with the plausible formula must therefore contain
the same ratio.
Answer: m= 3.15x10-3 g NaHCO3
Explanation: To find the mass of NaHCO3 we will use the relationship between moles and molar mass. The molar mass of NaHCO3 is 84 g.
3.75x10-5 moles NaHCO3 x 84 g NaHCO3 / 1 mole NaHCO3
= 3.15x10-3 g NaHCO3