Answer:
"8 units" is the appropriate answer.
Explanation:
According to the question,
Throughout equilibrium all particles are of equivalent intensity, and as such the integrated platform's total energy has been uniformly divided across all individuals.
Now,
The total energy will be:
= 
= 
The total number of particles will be:
= 
= 
hence,
Energy of each A particle or each B particle will be:
= 
= 
Answer:
you just have to draw a line from the eye reflecting from the mirror to the object shown.
Explanation:
Dont come at me if its wrong. I think thats what their asking of you.
Answer:
98 m √
Explanation:
How about s = Vo * t + ½at² ?
s = h = Vo * 2s - 4.9m/s² * (2s)² = 2Vo - 19.6
and
h = Vo * 10s - 4.9m/s² * (10s)² = 10Vo - 490
Subtract 2nd from first:
0 = -8Vo + 470.4
Vo = 58.8 m/s
h = 58.8m/s * 2s - 4.9m/s² * (2s)² = 98 m
Answer:
The electrical loads in parallel circuits each have the same voltage drop, with equals the total applied voltage of the circuit.
Explanation:
I did some research and the voltage drop across any branch of a parallel circuit is the same as the applied voltage.
A 60.0 kg secretary running up a 4.0 m tall flight of stairs in 4.2 s has an average power of 560 W (Option b).
<h3>What is power?</h3>
Power is the work done over a period of time.
A secretary with a mass (m) of 60.0 kg runs up a 4.0 m (d) tall flight of stairs. Given gravity (g) is 9.81 m/s², the work (W) done is:
W = m × g × d = 60.0 kg × 9.81 m/s² × 4.0 m = 2.35 × 10³ J
They do 2.4 × 10³ J of work in 4.2 s (t). The average power (P) is:
P = W / t = 2.35 × 10³ J / 4.2 s = 560 W
A 60.0 kg secretary running up a 4.0 m tall flight of stairs in 4.2 s has an average power of 560 W (Option b).
Learn more about power here: brainly.com/question/911620
#SPJ1