Answer:
Since the reading wasn't specified, it would be most likely A
Explanation:
A is the most similar to a protoplanetary disk, so it'd be A most likely
Answer:
15.065ft
Explanation:
To solve this problem it is necessary to consider the aerodynamic concepts related to the Drag Force.
By definition the drag force is expressed as:

Where
is the density of the flow
V = Velocity
= Drag coefficient
A = Area
For a Car is defined the drag coefficient as 0.3, while the density of air in normal conditions is 1.21kg/m^3
For second Newton's Law the Force is also defined as,

Equating both equations we have:



Integrating


Here,






Replacing:




Complete Question:
Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric force on sphere B due to sphere A is F . F. The magnitude of the electric force on sphere A due to sphere B must be:
A. 2F
B. F/4
C. F/2
D. F
E. 4F
Answer:
D.
Explanation:
If both spheres can be treated as point charges, they must obey the Coulomb's law, that can be written as follows (in magnitude):

As it can be seen, this force is proportional to the product of the charges, so it must be the same for both charges.
As this force obeys also the Newton's 3rd Law, we conclude that the magnitude of the electric force on sphere A due to sphere B, must be equal to the the magnitude of the force on the sphere B due to the sphere A, i.e., just F.
Initial velocity = 
acceleration in the downward direction = -9.8 
Final velocity at the highest point = 0
Maximum height reached = 0.410 m
Now, Using third equation of motion:




Speed with which the flea jumps = 
Time = (distance) / (speed)
Time = (180 miles) / (60 mi/hr)
Time = (180/60) (mi-hr/mi)
<em>Time = 3 hours</em>