Answer:
Option A is correct - While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present on the string vibrates at twice the fundamental frequency.
Explanation:
Before touching the midpoint of the string, the string vibrates with one loop.
Fundamental frequency, f1 = v/(2*L)
Now, when the midpoint of the guitar string was touched, the string vibrates with two loops.
Hence, f2 = 2*v/(2*L)
f2 = 2*f1
Therefore, compared to the fundamental frequency the frequency would be double.
Option A is correct - While a guitar string is vibrating, you gently touch the midpoint of the string to ensure that the string does not vibrate at that point. The lowest-frequency standing wave that could be present on the string vibrates at twice the fundamental frequency.
Subduction is, "<span>the sideways and downward movement of the edge of a plate of the earth's crust into the mantle beneath another plate." The basalt would most likely be swallowed up into the ground.
Hope this is what you were looking for! :)
</span>
Answer:
a) The strength of gravity decreases if one moved away from Jupiter
b) The strength of gravity increases if one fell into Jupiter
Explanation:
The gravitational attraction is given by Newton law of gravitation as follows;

Where;
G = The universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)
M = The mass of Jupiter
m = The mass of the nearby body
R = The distance between the centers of Jupiter and the body
From the equation, we have that the gravitational strength varies inversely with the square of the separation distance between two bodies
Therefore, as one moves away, R increases, and the strength of gravity reduces
Similarly as the body falls into Jupiter, R, reduces the gravitational strength increases.
Answer:
The cannon recoils with a force of 332.5 N
Explanation:
By Newton's third law Recoil force on cannon = Force in shell.
Force in shell = Mass of shell x Acceleration of shell
Mass of shell = 3.5 kg
Acceleration of shell = 95 m/s²
Force in shell = 3.5 x 95 = 332.5 N
Recoil force on cannon = 332.5 N
So, the cannon recoils with a force of 332.5 N