Answer:
speed of the bullet before it hit the block is 200 m/s
Explanation:
given data
mass of block m1 = 1.2 kg
mass of bullet m2 = 50 gram = 0.05 kg
combine speed V= 8.0 m/s
to find out
speed of the bullet before it hit the block
solution
we will apply here conservation of momentum that is
m1 × v1 + m2 × v2 = M × V .............1
here m1 is mass of block and m2 is mass of bullet and v1 is initial speed of block i.e 0 and v2 is initial speed of bullet and M is combine mass of block and bullet and V is combine speed of block and bullet
put all value in equation 1
m1 × v1 + m2 × v2 = M × V
1.2 × 0 + 0.05 × v2 = ( 1.2 + 0.05 ) × 8
solve it we get
v2 = 200 m/s
so speed of the bullet before it hit the block is 200 m/s
Answer:
Explanation:
Let T be the tension .
Applying newton's second law on the downward movement of the bucket
mg - T = ma
On the drum , a torque of TR will be acting which will create an angular acceleration of α in it . If I be the moment of inertia of the drum
TR = Iα
TR = Ia/ R
T = Ia/ R²
Replacing this value of T in the other equation
mg - T = ma
mg - Ia/ R² = ma
mg = Ia/ R² +ma
a ( I/ R² +m)= mg
a = mg / ( I/ R² +m)
mg - T = ma
mg - ma = T
mg - m x mg / ( I/ R² +m) = T
mg - m²g / ( I/ R² +m ) = T
mg - mg / ( 1 + I / m R² ) = T
b ) T = Ia/ R²
I = TR² / a
c ) Moment of inertia of hollow cylinder
I = 1/2 M ( R² - R² / 4 )
= 3/4 x 1/2 MR²
= 3/8 MR²
I / R² = 3/8 M
a = mg / ( I/ R² +m)
a = mg / ( 3/8 M + m )
T = Ia/ R²
= 3/8 MR² x mg / ( 3/8 M + m ) x 1 /R²
= 
Answer: C. 12.6
Explanation: 2*pi*1.8= 11.304
11.304/0.9= 12.56
250kg
would have momentum that is being caried by the impact of the trow
I know it’s the Coulomb’s law and that I’m pretty sure the answer would be C.Inverse Square.