Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s
Work = force * distance.
We must produce twice as much energy as we are lifting the weight twice as high.
But we are not increasing the force so we must increase the length of the ramp ( distance ) instead.
The new length will be twice as great as the previous length.
So 8 metres is required.
25 kg * 8 m = work = 100 kg * 2 m
Answer:
A step by step to walk
Explanation:
One- Make sure your shoes are tied so that you dont trip
Two- Make sure your way is a cleared path so you dont fall or even hurt yourself
three- use both set of lets to go in any direction you want.
Four- when walking make sure to try and keep a steedy pace so that both set of legs are going up and down but in harmony
Answer:
c) It has a greater frequency than red light but a smaller frequency than blue light.
Explanation:
According to the relation:
c = frequency × Wavelength
The higher the frequency, the lower the value of wavelength
The order of wavelength is:
Violet < Indigo < Blue < Green < Yellow < Orange < Red
Stated above, frequency is inversely proportional to the wavelength. Thus, the order of wavelength is:
Violet > Indigo > Blue > Green > Yellow > Orange > Red
Thus,
<u>Green light has lower frequency than blue light and higher than red light.</u>
Well, as the waves move it moves the rope as if its trying to take shape of it. Since the rope it light it will move along the ocean and the ocean will keep pushing up on the rope. (even without the waves the water is pushing the rope up so it can take its shape)
Maybe that'll help