m = mass of the truck = 23 00 kg
v = speed of the truck down the highway = 32 m/s
K = kinetic energy of the truck = ?
kinetic energy of the truck down the highway is given as
K = (0.5) m v²
inserting the values
K = (0.5) (2300) (32)²
K = (0.5) (2300) (1024)
K = (1150) (1024)
K = 1177600 J
hence the kinetic energy of the truck comes out to be 1177600 J
Answer:
i speak english not spanigh sorry :(
Explanation:
Answer:
Net force will be 4.875 N
Explanation:
We have given mass of the cart m = 1.5 kg
Initial velocity of the cart = 0.2 m/sec
And final velocity of the car = - 0.125 m/sec ( Negative direction is due to opposite direction )
Instant of time 
Change in momentum is given by

Now force is given by

Net force will be 4.875 N
The volume flow rates for ∆P is 6.81m³/s .
<h3>What is pressure?</h3>
The amount of force applied on perpendicular to the surface of an object per unit area. The unit of it is pascal.
According to bernaulli's theorem theorem
P+1/2pV²+pgy = constant
where p fluid density
g is acceleration due to gravity, pressure at elevation,v is Velocity at elevation ,y is height of elevation.
As there are two tubes then the height of tube 1 is equal to height of tube two .
P1-P2=1/2p(Vd²-Vl²)
The flow rate of liquid is A1V1=A2V2 .
rest is attached in image
to learn more about Pressure click here brainly.com/question/12971272
#SPJ4
Answer:
The car traveled the distance before stopping is 90 m.
Explanation:
Given that,
Mass of automobile = 2000 kg
speed = 30 m/s
Braking force = 10000 N
For, The acceleration is
Using newton's formula

Where, f = force
m= mass
a = acceleration
Put the value of F and m into the formula

Negative sing shows the braking force.
It shows the direction of force is opposite of the motion.


For the distance,
Using third equation of motion

Where, v= final velocity
u = initial velocity
a = acceleration
s = stopping distance of car
Put the value in the equation


Hence, The car traveled the distance before stopping is 90 m.