1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Diano4ka-milaya [45]
3 years ago
12

Identify properties of a human body system

Physics
1 answer:
IceJOKER [234]3 years ago
5 0

Answer:

integumentary, skeletal, muscular, nervous, endocrine, cardiovascular, lymphatic, respiratory, digestive, urinary, and reproductive

Explanation:

and this is biology not physics

You might be interested in
A car is traveling at the bottom of a 9.00-meter-radius circular hill with a constant speed v. The moment the car is at the bott
Rina8888 [55]

Answer:

Explanation:

reading of scale = reaction force of surface R

centripetal force = R - mg = m v² / R , m is mass , v is velocity and R is radius of the circular path .

R = mg + m v² / R

given ,

m v² / R = .80 mg

v² = .80 x g x R

= .8 x 9.8 x 9 = 70.56

v = 8.4 m /s

3 0
2 years ago
Describe 2 characteristics of the neap tide. *
Mariana [72]

Answer:

Neap tides, which also occur twice a month, happen when the sun and moon are at right angles to each other. ... This occurs twice each month. The moon appears new (dark) when it is directly between the Earth and the sun. The moon appears full when the Earth is between the moon and the sun.

5 0
3 years ago
A constant force is exerted on a cart that is initially at rest on a frictionless air track. The force acts for a short time int
Inessa05 [86]

Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of

<em>F</em> = <em>m a</em>   →   <em>a</em> = <em>F </em>/ <em>m</em>

so that the cart's final speed is

<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>

<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>

<em />

If we force is halved, so is the accleration:

<em>a</em> = <em>F</em> / <em>m</em>   →   <em>a</em>/2 = <em>F</em> / (2<em>m</em>)

So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give

(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>

3 0
3 years ago
If a hydrogen atom has its electron in the n= 4 state, how much energy in eV is needed to ionize it?
ololo11 [35]

Answer:

Explanation:

Energy of electron in n = 4 state

= - 13.6/4² =- 0.85 eV

So energy needed to extract it from atom = .85 eV.

4 0
3 years ago
The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of g
Morgarella [4.7K]

Here is the full question:

The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by:  

k=\sqrt{\frac{I}{M} }

The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 1.20 m, (b) a thin spherical shell of radius 1.20 m, and (c) a solid sphere of radius 1.20 m, all rotating about their central axes.

Answer:

a) 0.85 m

b) 0.98 m

c) 0.76 m

Explanation:

Given that: the radius of gyration  k=\sqrt{\frac{I}{M} }

So, moment of rotational inertia (I) of a cylinder about it axis = \frac{MR^2}{2}

k=\sqrt{\frac{\frac{MR^2}{2}}{M} }

k=\sqrt{{\frac{MR^2}{2}}* \frac{1}{M} }

k=\sqrt{{\frac{R^2}{2}}

k={\frac{R}{\sqrt{2}}

k={\frac{1.20m}{\sqrt{2}}

k = 0.8455 m

k ≅ 0.85 m

For the spherical shell of radius

(I) = \frac{2}{3}MR^2

k = \sqrt{\frac{\frac{2}{3}MR^2}{M}  }

k = \sqrt{\frac{2}{3} R^2}

k = \sqrt{\frac{2}{3} }*R

k = \sqrt{\frac{2}{3}}  *1.20

k = 0.9797 m

k ≅ 0.98 m

For the solid sphere of  radius

(I) = \frac{2}{5}MR^2

k = \sqrt{\frac{\frac{2}{5}MR^2}{M}  }

k = \sqrt{\frac{2}{5} R^2}

k = \sqrt{\frac{2}{5} }*R

k = \sqrt{\frac{2}{5}}  *1.20

k = 0.7560

k ≅ 0.76 m

6 0
3 years ago
Other questions:
  • A wheel, starting from rest, rotates with a constant angular acceleration of 1.80 rad/s^2. During a certain 7.00 s interval, it
    7·1 answer
  • Assuming a constant force if the mass of an object increases the acceleration of the object will
    10·1 answer
  • Why are such scientific advances still valuable?
    15·1 answer
  • A glacier is eroding the land over which it passes. It moves at a rate of 2 m per day. Currently, the glacier is 80 km from a sm
    11·1 answer
  • Why do small bells have a high pitch
    8·1 answer
  • Two blocks with mass M and 3M on a horizontal frictionless surface are pushed together and compress a spring of negligible mass
    7·1 answer
  • What do fast-twitch and slow-twitch muscle fibers share in common
    10·1 answer
  • What is the acceleration of a car going 50 mph that slows down to rest over 10 seconds?
    5·1 answer
  • An object is placed 250 cm in front of a concave circular mirror, and the image of the object also appears at 250 cm in front of
    8·1 answer
  • A man with a mass of 60 kg rides a bike with a mass of 13 kg. What is the force needed to accelerate the bike at 0.90 m/s2?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!