James cut out four parallelograms, the dimensions of which are shown below. Parallelogram 1 length: 12 in. width: 15 in. diagona
l: 20 in. Parallelogram 2 length: 16 in. width: 30 in. diagonal: 34 in. Parallelogram 3 length: 20 in. width: 21 in. diagonal: 29 in. Parallelogram 4 length: 18 in. width: 20 in. diagonal: 26 in. James put the parallelograms together so one vertex from each paper exists on a point, as shown in the circle. 4 parallelograms are put together so that one vertex from each paper exists on a point. Which statement explains whether or not the parallelgrams can be put together so each occupies one-quarter of the area of the circle without overlapping any other pieces? Check all that apply. The quadrilaterals can be placed such that each occupies one-quarter of the circle. The quadrilaterals cannot be placed such that each occupies one-quarter of the circle because the vertices of parallelogram 1 do not form right angles. The quadrilaterals cannot be placed such that each occupies one-quarter of the circle because the vertices of parallelogram 2 do not form right angles. The quadrilaterals cannot be placed such that each occupies one-quarter of the circle because the vertices of parallelogram 3 do not form right angles. The quadrilaterals cannot be placed such that each occupies one-quarter of the circle because the vertices of parallelogram 4 do not form right angles.
Assuming the length is y and the width is x Perimeter = y + y + x + x = 2y +2x = 2 (y + x) if the is 8 and the perimeter is 108 108 = 2 (y +8) 108/2 = y+8 54 = y +8 54 - 8 = y 46 = y