Answer:
a) 
b) 
Explanation:
The frequency of the
harmonic of a vibrating string of length <em>L, </em>linear density
under a tension <em>T</em> is given by the formula:

a) So for the <em>fundamental mode</em> (n=1) we have, substituting our values:

b) The <em>frequency difference</em> between successive modes is the fundamental frequency, since:

Answer:
The blade of sharpener is made up of iron. Iron is a magnetic material because of this pencil sharpener gets attracted by the poles of a magnet although the body is made up of plastic.
Answer:
p = FΔt = 8.0 N(60 s) = 480 N•s
Explanation:
not asked for, but in that time a frictionless 18 kg mass on a horizontal surface will have change velocity by 480/18 = 26.7 m/s.
An impulse results in a change of momentum.
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Answer:
t = 4.17 [s]
Explanation:
We know that work is defined as the product of force by distance.
W = F*d
where:
F = force [N] (units of Newtons)
d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]
In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.
w = m*g
where:
m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]
g = gravity acceleration = 9.81 [m/s²]
w = 14.7*9.81
w = 144.2 [N]
Therefore the work can be calculated.
W = w*d
W = 144.2*63.4
W = 9142.72 [J] (units of Joules)
Power is now defined in physics as the relationship of work at a given time
P = W/t
where:
P = power = 2190 [W]
t = time [s]
Now clearing t, we have.
t = W/P
t = 9142.72/2190
t = 4.17 [s]