1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
3 years ago
8

Basketball player Darrell Griffith is on record as

Physics
1 answer:
Gre4nikov [31]3 years ago
5 0

Explanation:

1.

We use the equation

h = \frac{gt^2}{2}, where

h is the height traveled,

g is the acceleration due to gravity and

t is the time taken to reach height h.

We can now calculate t to be

\sqrt{\frac{2*1.2 m}{9.81 m/s^2} }

= 0.495 s

Let v be the initial velocity of the player.

The player deaccelarates from v m/s to 0 m/s in 0.495 s at the rate of 9.81 m/s^2.

v = 9.81 m/s^2 x 0.495 s = 4.85 m/s

2.

The player takes 0.3 s to increase his velocity from 0 m/s to 4.85 m/s. So his average accelaration is

4.85 m/s / 0.3 s = 16.2 m/s^2

You might be interested in
Please help giving 15 points<br> How do you calculate the density of an object?
Elis [28]
You first find the mass and the volume of that object. Then you divide mass ÷ volume
3 0
3 years ago
Read 2 more answers
Two bodies of specific heats S1 and S2 having the same heat capacities are combined to form a single composite body. What is the
Dafna11 [192]

\qquad\qquad\huge\underline{{\sf Answer}}♨

Heat capacity of body 1 :

\qquad \sf  \dashrightarrow \:m_1s_1

Heat capacity of body 2 :

\qquad \sf  \dashrightarrow \:m_2s_2

it's given that, the the head capacities of both the objects are equal. I.e

\qquad \sf  \dashrightarrow \:m_1s_1 = m_2s_2

\qquad \sf  \dashrightarrow \:m_1 =  \dfrac{m_2s_2}{s_1}

Now, consider specific heat of composite body be s'

According to given relation :

\qquad \sf  \dashrightarrow \:(m_1 + m_2) s' = m_1s_1 + m_2s_2

\qquad \sf  \dashrightarrow \:s' = \dfrac{ m_1s_1 + m_2s_2}{m_1 + m_2}

\qquad \sf  \dashrightarrow \:s' = \dfrac{ m_2s_2+ m_2s_2}{ \frac{m_2s_2}{s_1} + m_2 }

[ since, m_2s_2 = m_1s_1 ]

\qquad \sf  \dashrightarrow \:s' = \dfrac{ 2m_2s_2}{ m_2(\frac{s_2}{s_1} + 1)}

\qquad \sf  \dashrightarrow \:s' = \dfrac{ 2 \cancel{m_2}s_2}{  \cancel{m_2}(\frac{s_2}{s_1} + 1)}

\qquad \sf  \dashrightarrow \:s' = \dfrac{ 2 s_2}{  (\frac{s_2 + s_1}{s_1} )}

\qquad \sf  \dashrightarrow \: s' =  \dfrac{2s_1s_2}{s_1 + s_2}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

6 0
2 years ago
Read 2 more answers
Two large thin metal plates are parallel and close to each other. On their inner faces, the plates have excess surface charge of
wariber [46]

Answer:

For left = 0  N/C

For right = 0  N/C

At middle = -7.6836 * 10^{-11} \vec{i}  N/C

Explanation:

Given data :-

б =6.8 * 10^{-22} C/ m²

Considering the two thin metal plates to be non conducting sheets of charges.

Electric field is given by

E = \frac{\sigma }{2\varepsilon }

1) To the left of the plate

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(\vec{i})   = 0 N/C.

2) To the right of them.

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(\vec{i})   = 0 N/C.

3) Between them.

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(-\vec{i}) = (\frac{\sigma }{\varepsilon })(-\vec{i}) = -\frac{6.8 * 10^{-22} }{8.85 * 10 ^{-12} }  \vec{i} =   -7.6836 * 10^{-11} \vec{i} N/C

5 0
3 years ago
A 100 kg bungee jumper leaps from a bridge. The bungee cord has an un-streched equilibrium length of 10 m, and a spring constant
nika2105 [10]

Answer:

11.78meters

Explanation:

Given data

Mass m = 100kg

Length of cord= 10m

Spring constant k= 35N/m

At the greatest vertical distance, the spring potential energy is equal to the gravitational potential energy

That is

Us=Ug

Us= 1/2kx^2

Ug= mgh

1/2kx^2= mgh

0.5*35*10^2= 100*9.81*h

0.5*35*100=981h

1750=981h

h= 1750/981

h= 1.78

Hence the bungee jumper will reach 1.78+10= 11.78meters below the surface of the bridge

6 0
3 years ago
Read 2 more answers
Austin performed an experiment. He put 100mL of vegetable oil (density 0.9 g/ml) in a graduated cylinder. He put a 100g mass of
Grace [21]

Answer:

Explanation:

mass of displaced oil = 11 x  .9

= 9.9 gm

9.9 x 10⁻³ kg

weight of displaced oil = 9.9 x 9.81 x 10⁻³ N

= .097 N .

buoyant force by oil = .097 N

weight of unknown metal = .1 x 9.8

= .98 N .

weight of metal in oil = .98 - .097

= .883 N .

=

6 0
3 years ago
Other questions:
  • Find the sine,cosine and tangent ratios​
    10·1 answer
  • A short term affect of anorexia might include wight loss
    7·1 answer
  • What’s gravitational pull of the earth
    6·2 answers
  • An empty office chair is at rest on a floor. Consider the following forces:. 1. A downward force due to gravity;. 2. An upward forc
    7·1 answer
  • HELP PLZZZZZ NOW!!!
    12·2 answers
  • Do this for alot of points
    15·1 answer
  • A child with a mass of 23 kg rides a bike with a mass of 5.5 kg at a velocity of 4.5 m/s to the south. Compare the momentum of t
    5·1 answer
  • weight of Ali is 500andN.he is standing on the ground with an area of 0.025 m^2 area .we can find pressure under his feet. what
    10·1 answer
  • A 2800 kg speedboat starting from rest attains a speed of 16 m/s in 8.0 s as a combination of 1200 N of air resistance and water
    8·1 answer
  • Which shows the weight of an atom?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!