1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
9

Opposite poles of different magnets will attract each other and like poles will repel each other. This is an example of which of

the following?lawhypothesistheory
Physics
2 answers:
sasho [114]3 years ago
6 0
The Law of Attraction or Theory of Magnetism
Stolb23 [73]3 years ago
4 0

Answer:

Explanation: Opposite poles of different magnets attract each other whereas same poles repel each each other this is an example of theory of magnetism and law of attraction that opposites attract. In case of magnets north- north and south- south poles repel each other while north-south and south - north attracts each other. Since earth is a big magnet and its magnetic north and south pole follows the same rule of attraction.

You might be interested in
The displacement of a 500 g mass, undergoing simple harmonic motion, is defined by the function :
Delicious77 [7]

The maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

<h3>What is simple harmonic motion?</h3>

Simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side.

Simple Harmonic Motion

The given equation of the simple harmonic motion is

x=3.5 sin (\frac{\pi }{2t} + \frac{5\pi }{4} )

Data;

ω = π/2

k = 1.254N/m

Solving this

\frac{dx}{dt} = -3.5 X \frac{\pi }{2} cos (\frac{x\pi t}{2}+\frac{5\pi }{4}  )

Let's calculate the maximum velocity.

V_{m} =\frac{3.5\pi }{2}

This is only possible when cos θ = -1

The maximum kinetic energy is

K_m =\frac{1}{2} mv^2 = \frac{1}{2} X \frac{500}{1000} X \frac{7^2\pi ^2}^{4} ^2

w^2 = \frac{k}{m} \\k = w^2m\\k = \frac{\pi ^2}{4} X \frac{500}{1000} \\k =1.254 N/m

Using the value of spring constant, we can find the maximum potential energy.

P.E =\frac{1}{2} k x^2\\P.E =\frac{1}{2} X 1.234 X 3.5^2 \\P.E = 7.56 J

The maximum potential energy is 7.56J

The maximum mechanical energy is equal to the sum of maximum potential energy and the maximum kinetic energy.

ME = K.E + P.E

ME = 7.56J

From the calculations above, the maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

Learn more on simple harmonic motion here;

brainly.com/question/15556430

#SPJ1

8 0
2 years ago
A construction worker is carrying a load of 40 kg over his head and is walking at a constant velocity if he travels a distance o
Anastasy [175]

Answer:

W = 0

Explanation:

We are given with, a construction worker is carrying a load of 40 kg over his head and is walking at a constant velocity. He travels a distance of 50 m.

The work done by an object is given by :

W=Fd

F = ma

So,

W=mad

m is mass

a is acceleration

d is displacement

The worker is moving with constant velocity, its acceleration will be 0. So, the work done by the worker is 0.

8 0
3 years ago
uniform disk with mass 40.0 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is station
Alex787 [66]

Answer:

The magnitude of the tangential velocity is v= 0.868 m/s

The magnitude of the resultant acceleration at that point is  a = 4.057 m/s^2

Explanation:

From the question we are told that

      The mass of the uniform disk is m_d = 40.0kg

       The radius of the uniform disk is R_d = 0.200m

       The force applied on the disk is F_d = 30.0N

Generally the angular speed i mathematically represented as

             w = \sqrt{2 \alpha  \theta}

Where \theta is the angular displacement given from the question as

           \theta  = 0.2000 rev = 0.2000 rev * \frac{2 \pi \ rad }{1 rev}

                 =1.257\  rad

   \alpha is the angular acceleration which is mathematically represented as

                    \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

    The moment of inertial is mathematically represented as

                     I = \frac{1}{2} m_dR^2_d

Substituting values

                    I = 0.5 * 40 * 0.200^2

                        = 0.8kg \cdot m^2

Considering the equation for angular acceleration

               \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

Substituting values

               \alph\alpha = \frac{(30.0)(0.200)}{0.8}

                   = 7.5 rad/s^2

Considering the equation for angular velocity

    w = \sqrt{2 \alpha  \theta}

Substituting values

     w =\sqrt{2 * (7.5) * 1.257}

         = 4.34 \ rad/s

The tangential velocity of a given point on the rim is mathematically represented as

                 v = R_d w

Substituting values

                    = (0.200)(4.34)

                     v= 0.868 m/s

The radial acceleration at hat point  is mathematically represented as

            \alpha_r = \frac{v^2}{R}

                  = \frac{0.868^2}{0.200^2}

                 = 3.7699 \ m/s^2

The tangential acceleration at that point is mathematically represented as

               \alpha _t = R \alpha

Substituting values

           \alpha _t = (0.200) (7.5)

                 = 1.5 m/s^2

The magnitude of resultant acceleration at that point is

                 a = \sqrt{\alpha_r ^2+ \alpha_t^2 }

Substituting values

                a = \sqrt{(3.7699)^2 + (1.5)^2}

                   a = 4.057 m/s^2

         

7 0
3 years ago
An object accelerates from rest and travels 53 m west in 5.2 s. Determine the acceleration
zmey [24]

Answer:

20.4m/s²

Explanation:

Given parameters:

Initial velocity  = 0m/s

Distance  = 53m

Time  = 5.2s

Unknown:

Acceleration  = ?

Solution:

This is a linear motion and we use the right motion equation;

        S = ut  + \frac{1}{2}at²

S is the distance

u is the initial velocity

a is the acceleration

t is the time

 Insert the parameters and solve;

       53  = (0x 5.2) +  \frac{1}{2} x a x 5.2

       53  = 2.6a

         a = \frac{53}{2.6}  = 20.4m/s²

6 0
2 years ago
Why can you see your own reflected image in a mirror but not on a dry, painted wall?
kaheart [24]
A wall uses diffuse reflection while a mirror uses specular reflection. For example, when parallel light rays enter a mirror, they remain parallel when exiting the mirror, allowing you to see a reflection of the light rays. On the contrary, when incident light rays enter a wall which is painted, the rays scatter, not allowing you to see anything but a painted wall. 
7 0
3 years ago
Other questions:
  • The half-life of carbon-14 is 5370 years. The carbon-14 levels in a fossil indicate that 6 half-lives have passed. How old is th
    6·2 answers
  • What is a resource that is constantly being replenish
    12·1 answer
  • Suppose a ball is dropped from shoulder height, falls, makes a perfectly elastic collision with the floor, and rebounds to shoul
    14·1 answer
  • Two infinite plane sheets with uniform surface charge densities are placed parallel to each other with separation d. in the regi
    5·1 answer
  • Ricardo is on vacation, doing some mountain climbing. He notices that the higher he goes up a mountain, the colder he feels. He
    13·2 answers
  • The spring-mounted 0.84-kg collar A oscillates along the horizontal rod, which is rotating at the constant angular rate rad/s. A
    14·1 answer
  • A particle of charge Q is fixed at the origin of an xy coordinate system. At t = 0 a particle (m = 0.959 g, q = 5.84 µC is locat
    7·1 answer
  • 3. A 70 kg person climbs a 6 m ladder. How much work is required by the person?
    8·1 answer
  • Joaquin is at rest at the top of a hill on a skateboard. Four seconds later, he reaches the bottom of the hill at a final veloci
    13·1 answer
  • Pls help me solve these questions.​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!