Answer:
opposite direction
Explanation:
An electric field is defined as a physical field which surrounds the electrically charged particles that exerts force on the other particles on the field.
Now when an electron or a negatively charged particle enters a uniform electric field, the electric forces acts on the negatively charged particles and it forces the particle to move in the direction which is opposite to the direction of the field. In an uniform electric field, the field lines are parallel.
Answer:
The object will sink in the liquid in beaker 1.
The object will float in the liquid in beaker 2
Explanation:
The density of an object relative to the density of a fluid determines if the object floats or sink in a fluid. The density of a material is the measure of the amount of mass of that material packed into a unit volume of that material.
For the beaker 1, the liquid in this beaker has a density of 0.5 g/cc, which is lesser than the density of the object (0.85 g/cc). This means that the object will add more mass than there should be to the volume of the space it displaces within the field. This results in the object sinking in the fluid.
For beaker 2, the liquid in this beaker has a density of 1 g/cc, which is more than the density of the object (0.85 g/cc). This means that the object will add less mass than there should be to the volume of the space it displaces within the field. This results in the object floating in the fluid.
Answer:
A. False
B. False
C. True
D. True
E. True
F. True
Explanation:
A. The equation Ax=b is referred to as a matrix equation and not vector equation.
B. If the augmented matrix [ A b ] has a pivot position in every row then equation Ax=b may or may not be consistent. It is inconsistent if [A b] has a pivot in the last column b and it is consistent if the matrix A has a pivot in every row.
C. In the product of Ax also called the dot product the first entry is a sum of products. For example the the product of Ax where A has [a11 a12 a13] in the first entry of each column and the corresponding entries in x are [x1 x2 x3] then the first entry in the product is the sum of products i.e. a11x1 + a12x2 +a13x3
D. If the columns of mxn matrix A span R^m, this states that every possible vector b in R^m is a linear combination of the columns which makes the equation consistent. So the equation Ax=b has at least one solution for each b in R^m.
E. It is stated that a vector equation x1a1 + x2a2 + x3a3 + ... + xnan = b has the same solution set as that of the linear system with augmented matrix [a1 a2 ... an b]. So the solution set of linear system whose augmented matrix is [a1 a2 a3 b] is the same as solution set of Ax=b if A=[a1 a2 a3] and b can be produced by linear combination of a1 a2 a3 iff the solution of linear system corresponding to [a1 a2 a3 b] takes place.
F. It is true because lets say b is a vector in R^m which is not in the span of the columns. b cannot be obtained for some x which belongs to R^m as b = Ax. So Ax=b is inconsistent for some b in R^m and has no solution.
Answer:
Distance is 500 m, displacement is 0
Explanation:
Distance and displacement are defined in two different ways:
- Distance is the total length of the path covered by an object in motion - so it depends on the path taken. In this problem, the distance travelled by the car corresponds to the length of one lap, which is the length of the track, so 500 m
- Displacement is the distance in a straight line between the final point and the initial point of the motion. This means that displacement does not depend on the path taken, but only on the starting and ending point of the motion. In this problem, the car completes one lap, so the final position of the car is equal to its starting position - therefore the displacement is zero, since the distance between these two points is zero.
Capacitance is a measure of charge stored per volt.