Answer:
82.7 kg
Explanation:
the mass of the boxer remains unchanged, this is because mass is a measure of the quantity of matter in an object irrespective of its location and the gravitational force acting at its location. this means mass is independent of the gravitational acceleration hence it remains the same 82.7 kg. its unit is in kilograms (Kg).
Answer:
the speed after 3 seconds is 10 m/s
Explanation:
The computation of the speed is shown below:
As we know that
V = U + at
Here,
U = 34 m/s
a = - 8 m/s²
t = 3 Sec
V = velocity after 3 sec
V = 34 + (-8)3
= 34 - 24
V = 10 m/s
Hence, the speed after 3 seconds is 10 m/s
The force on each balloon is 2×10^−3 N.
Consider two balloons of diameter 0.200m each with a mass of 1.00g hanging apart with 0.0500m separation on the ends of string making angles of 10.0° with the vertical.

So,

A force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N).
Learn more about force here:
brainly.com/question/13191643
#SPJ4
Answer:
a) Eₓ = - A y + 2B x
, b) Ey = -Ax –C
, c) Ez = 0
, d) The correct answer is 3
Explanation:
The electric field and the electric power are related
E = - dV / ds
a) Let's find the electric field on the x axis
Eₓ = - dV / dx
dV / dx = A y - B 2x
Eₓ = - A y + 2B x
b) calculate the electric field on the y-axis
Ey = - dV / dy
dV / dy = A x + C
Ey = -Ax –C
c) the electric field on the z axis
dv / dz = 0
Ez = 0
.d) at which point the electric field is zero
Since the electric field is a vector quantity all components must be zero
X axis
0 = = - A y + 2B x
y = 2B / A x
Axis y
0 = -Ax –C
.x = -C / A
We substitute this value in the previous equation
.y = 2B / A (-C / A)
.y = 2 B C / A2
The correct answer is 3
Answer:
(a) Magnitude of Vector = 207.73 m
(b) Direction = 65.48°
Explanation:
(a)
The formula to find out the magnitude of a resultant vector with the help of its x and y components is given as follows:

<u>Magnitude of Vector = 207.73 m</u>
(b)
For the direction of the vector we have the formula:

<u>Direction = 65.48°</u>