(a) James has the most momentum which is 294 kgm/s.
(b) The resultant force acting on Basma is 90.78 N.
(c) The time taken for James to stop is 3.2 seconds.
<h3>
Momentum of each person</h3>
Momentum of James: P = mv = 98 x 3 = 294 kgm/s
Momentum of Basma: P = mv = 59 x 4 = 236 kgm/s
<h3>Resultant force of Basma</h3>
F = ma = mv/t = P/t = 236/2.6 = 90.78 N
<h3>Time for James to stop</h3>
F = P/t
t = P/F
t = 294/90.78
t = 3.2 s
Learn more about momentum here: brainly.com/question/7538238
#SPJ1
Answer:
a) 0.0130 m
b') w' = =6.46*10^{-3] m
Explanation:
given data:
\lambda of light = 633 nm
width of siit a =0.360 mm
distance from screen = 3.75 m
a) the first minima is located at
=
with of central fringe = 2y_1 = 2*6.54 *10^{-3} = 0.0130 m
b)
width of the first bright fringe on either side of the central one =
calculation for y_2
=
w' = =6.46*10^{-3] m
Normal is the other half of an action-reaction pair
If a person is sitting on a chair , there must be a gravitation force acting in downward direction which is equal to the weight of that person . That means the person is exerting a force on the chair equal to its weight . But the person is not falling down the chair , because of newtons third law of motion .
There must be a counter force which is equal and opposite to the force exerted by the person on the chair , in order to make net force equal to zero and to make that man in stationary state ( no movement ) .That force is called Normal force which is been acted by the chair on the person .This implies Normal is the other half of an action-reaction pair
learn more about Force:
brainly.com/question/14110395?referrer=searchResults
#SPJ4
Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
Explanation:
Power is related to energy by the following relationship:
where
P is the power used
E is the energy used
t is the time elapsed
In this problem, we know that
- the power of the fan is P = 120 W
- the fan has been running for one hour, which corresponds to a time of
So we can re-arrange the previous equation to find E, the energy (in the form of thermal energy) released by the fan: