Answer:
- 1.07 ft
Explanation:
V1 = (-5, 7, 2)
V2 = (3, 1, 2)
Projection of v1 along v2, we use the following formula
=\frac{\overrightarrow{V1}.\overrightarrow{V2}}{V2}
So, the dot product of V1 and V2 is = - 5 (3) + 7 (1) + 2 (2) = -15 + 7 + 4 = -4
The magnitude of vector V2 is given by
= 
So, the projection of V1 along V2 = - 4 / 3.74 = - 1.07 ft
Thus, the projection of V1 along V2 is - 1.07 ft.
so we need to find the direction of v2
Answer:
power emitted is 1.75 W
Explanation:
given data
length l = 5 cm = 5 ×
m
diameter d = 0.074 cm = 74 ×
m
total filament emissivity = 0.300
temperature = 3068 K
to find out
power emitted
solution
we find first area that is π×d×L
area = π×d×L
area = π×74 ×
×5 ×
area = 1162.3892 ×
m²
so here power emitted is express as
power emitted = E × σ × area × (temperature)^4
put here all value
power emitted = 0.300× 5.67 × 1162.3892 ×
× (3068)^4
power emitted = 1.75 W
Answer:
Explanation:
We need 2 different equations for this problem: first the velocity of sound equation, then the frequency of the sound equation.
The velocity of sound is found in:
v = 331.5 + .606T
We need to find that first in order to fill it into the frequency equation which is
where v is the velocity we will find the part a, f is frequency and lambda is the wavelength. Starting with the velocity of the sound:
v = 331.5 + .606(25) and
v = 331.5 + 15 and rounding correctly using the rules for sig fig when adding:
v = 347 m/s
Filling that into the frequency equation:
and
so
