The most common allotropes are:-
White phosphorus
Red phosphorus
The red one is an intermediate phase between white and violent phosphorus.
Answer:
Molarity = 0.7 M
Explanation:
Given data:
Volume of KCl = 20 mL ( 0.02 L)
Molarity = 3.5 M
Final volume = 100 mL (0.1 L)
Molarity in 100 mL = ?
Solution:
Molarity = number of moles of solute / volume in litter.
First of all we will determine the number of moles of KCl available.
Number of moles = molarity × volume in litter
Number of moles = 3.5 M × 0.02 L
Number of moles = 0.07 mol
Molarity in 100 mL.
Molarity = number of moles / volume in litter
Molarity = 0.07 mol /0.1 L
Molarity = 0.7 M
Answer:
36s^5
Explanation:
We have;
M2X3 (s)------> 2M^3+(aq) + 3X^2-(aq)
If [M^3+(aq)] = [X^2-(aq)] = s
We then have;
Ksp = (2s)^2 * (3s)^3
Ksp = 4s^2 * 9s^3
Ksp = 36s^5
Note that Ksp is known as the solubility product. It is an equilibrum equation that shows the solubility of a solute in water.
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.
Answer:
See explanation
Explanation:
Matter may exist in three phases; solid, liquid and gas. The state in which matter exists depends on the extent of intermolecular forces operating in the substance.
In solid particles, the molecules that compose the solid are close together because the molecules of a solid do not move from place to place but they continue to vibrate about their fixed position.
For liquids, the molecules that compose a liquid are in random motion but are less energetic than molecules of a gas.
In gases, the molecules are not held together at all. The molecules of a gas have the highest degree of freedom. They move from one point another at a high velocity.
Hence, the order of increasing degree of movement of the particles in different states of matter = solids<liquids< gases.
Solids have well arranged particles, the molecules of a liquid are a little more disorderly than liquid particles while gas particles are the most disorderly of all the states of matter.