Answer:
Original position: base is 1.5 meters away from the wall and the vertical distance from the top end to the ground let it be y and length of the ladder be L.
Step-by-step explanation:
By pythagorean theorem, L^2=y^2+(1.5)^2=y^2+2.25 Eq1.
Final position: base is 2 meters away, and the vertical distance from top end to the ground is y - 0.25 because it falls down the wall 0.25 meters and length of the ladder is also L.
By pythagorean theorem, L^2=(y -0.25)^2+(2)^2=y^2–0.5y+ 0.0625+4=y^2–0.5y+4.0625 Eq 2.
Equating both Eq 1 and Eq 2: y^2+2.25=y^2–0.5y+4.0625
y^2-y^2+0.5y+2.25–4.0625=0
0.5y- 1.8125=0
0.5y=1.8125
y=1.8125/0.5= 3.625
Using Eq 1: L^2=(3.625)^2+2.25=15.390625, L=(15.390625)^1/2= 3.92 meters length of ladder
Using Eq 2: L^2=(3.625)^2–0.5(3.625)+4.0625
L^2=13.140625–0.90625+4.0615=15.390625
L= (15.390625)^1/2= 3.92 meters length of ladder
<em>hope it helps...</em>
<em>correct me if I'm wrong...</em>
Answer:
1. All of the above.
2. Kilowatt hours.
Step-by-step explanation:
A power bill can be defined as a utility bill issued by a power utility company (provider) to illustrate the amount of energy (electricity) consumed by a customer.
Power bills usually show the following informations;
1. The total amount due: this represents an amount of money being owed by a consumer to a power utility company. The current amount due in addition to any outstanding balance is reflected in this tab.
2. The Kilowatt hours of electricity used: this represents the amount of electricity that was used by the consumer in the previous month.
3. The payment due date: this represents the least expected date for payment to be made by the consumer. If payment isn't made on or before the due date, the consumer will be disconnected.
<em>Generally, when calculating the power bill, power companies use kilowatt hours. The Kilowatt hours (KWh) represents the amount of energy (electricity) that is being used by a customer on a hourly rate. </em>
Answer:
2/3
Step-by-step explanation:
Use the formula for finding gradient.
Answer:
a) Number of hours it takes 1 centimetre of snow to form in Harper's yard = (1/5) hour = 0.20 hour
b) Centimetres of snow that accumulate per hour = 5 cm
Step-by-step explanation:
Complete Question
We can calculate the depth d of snow, in centimeters, that accumulates in Harper's yard during the first h hours of a snowstorm using the equation d=5h.
a) How many hours does it take for 1 centimeter of snow to accumulate in Harper's yard? hours
b) How many centimeters of snow accumulate per hour? centimeters
Solution
The depth of snow, d, in centimetres that accumulates in Harper's yard in h hours is given d = 5h
a) Number of hours it takes 1 centimetre of snow to form in Harper's yard.
d = 5h
d = 1 cm
h = ?
1 = 5h
h = (1/5) = 0.20 hour
b) Centimetres of snow that accumulate per hour.
d = 5h
In 1 hour, h = 1 hour
d = ?
d = 5 × 1 = 5 cm
Hope this Helps!!!