1 mole of any gas occupy 22.4 L at STP (standard temperature and pressure, 0°C and 1 atm).
Let given gases be 1 mole. So their volumes will be the same, 22.4 liters.
Density is the ratio of mass to volume.
By formula; density= mass/volume; d=m/V
To find out masses of gases, do the mole calculation.
By formula; mole= mass/molar mass; n= m/M; m= n*M
Molar masses are calculated as
1. C₂H₆ (ethane) = 2*12 g/mol + 6*1 g/mol= 30 g/mol
2. NO (nitrogen monoxide) = 1*14 g/mol + 1*16 g/mol= 30 g/mol
3. NH₃ (ammonia) = 1*14 g/mol + 3*1 g/mol= 17 g/mol
4. H₂O (water) = 2*1 g/mol + 1*16 g/mol= 18 g/mol
5. SO₂ (sulfur dioxide) = 1*32 g/mol + 2*16 g/mol= 64 g/mol
Use Periodic Table to get atomic mass of elements.
Since their volumes are equal, compounds having the same molar mass will have the same density.
Recall the formula d= m/V.
Ethane and nitrogen monoxide have the same density.
The answer is C₂H₆ and NO.
Is a measure of how heavy atoms are. It's the ratio of the average mass per atom of an element from a given sample to 1/12 the mass of a carbon-12 atom."
Answer:
A homogeneous mixture has the same uniform appearance and composition throughout. Many homogeneous mixtures are commonly referred to as solutions. A heterogeneous mixture consists of visibly different substances or phases. The three phases or states of matter are gas, liquid, and solid.
From Q = mcΔΤ, the specific heat capacity, c, of the metal that was cooled is c = Q/mΔT = (-769 J)/(46.4 g)(30.0 °C - 101.0 °C) = 0.233 J/g °C. From the table, it appears that this is the specific heat capacity of silver. So, the metal is most like silver.
Note: The value for Q was written as a negative value in the equation as heat energy was given off by the metal when the metal was cooled (from the metal’s point of view, it’s losing heat energy).