Answer:-3463 kJ and -3452kJ
Explanation:
ΔU is the change in internal energy of a system and its formula is;
ΔU = q + w
Where q represents heat transferred into or out of the system. Its value is positive when heat is transfer into the system and negative when heat is produced by the system.
W represents the work done on or by the system. Its value is positive when work is done on the system and negative when it is done by the system.
For the system in this question, we see that it produces heat which means heat is transferred out of the system, therefore the value of q is negative, it can also be seen that work is done by the system which means that w is also negative.
Therefore,
ΔU = -q-w
ΔU = -3452 kJ – 11kJ
= - 3463kJ
ΔH is the change in the enthalpy of a system and its formuls is;
ΔH = ΔU + Δ(PV)
By product rule Δ(PV) becomes ΔPV + PΔV
At constant pressure ΔP = 0. Therefore,
ΔH = -q-w + PΔV
w is equals to PΔV, So:
ΔH = -q
ΔH = -3452kJ
In order to find the molarity of the solution, we first require the moles of acetic acid added. For this,we need the mass which is:
Mass = volume * density
Mass = 50 * 1.05
Mass = 52.5 grams
Moles = mass / molecular weight
Moles = 52.5 / 60.05
Moles = 0.874 mol
Next, we know that the molarity of a solution is:
Molarity = moles / liter
Molarity = 0.874 / 0.5
Molarity = 1.75 M
Answer:
As you move across a period, the atomic mass increases because the atomic number also increases. ... The atomic mass for any given atom mainly comes from the mass of the protons and neutrons.
Explanation:
In formation of a Type II Binary Compound, the metal atom present is<span>
NOT</span> found in either Group 1 or Group 2 on the periodic table. For the choices, Ba is under Group 2 on the periodic table, which makes it the atom not involved in formation of type II compounds. The answer is B.