First off, let's notice that the angle is in the IV Quadrant, where sine is negative and the cosine is positive, likewise the opposite and adjacent angles respectively.
Also let's bear in mind that the hypotenuse is never negative, since it's simply just a radius unit.
![\bf cot(\theta )=\cfrac{\stackrel{adjacent}{6}}{\stackrel{opposite}{-7}}\qquad \impliedby \textit{let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ c=\sqrt{6^2+(-7)^2}\implies c=\sqrt{36+49}\implies c=\sqrt{85} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20cot%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B6%7D%7D%7B%5Cstackrel%7Bopposite%7D%7B-7%7D%7D%5Cqquad%20%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Bhypotenuse%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20c%3D%5Csqrt%7B6%5E2%2B%28-7%29%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B36%2B49%7D%5Cimplies%20c%3D%5Csqrt%7B85%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)


48 percent of the kids are females and 52 percent are males
Answer:
aakkakjasjsbsvshsjsbsbanjasjsjj
The answer is "quadrant II" because first u go five left because of the negative five which is on the x axis then go up 10 because of the positive 10 which on the y axis