The complex, highly technical formula for capacitors is
<em>Q = C V</em>
Charge = (capacitance) (voltage)
Charge = (3 F) (24 V)
<em>Charge = 72 Coulombs</em>
The positive plate of the capacitor is missing 72 coulombs worth of electrons. They were sucked into positive terminal of the battery stack.
The negative plate of the capacitor has 72 coulombs worth of extra electrons. They came from the negative terminal of the battery stack.
You should be aware that this is a humongous amount of charge ! An average <u><em>lightning bolt</em></u>, where electrons flow between a cloud and the ground for a short time, is estimated to transfer around <u><em>15 coulombs</em></u> of charge !
The scenario in the question involves a "supercapacitor". 3 F is is no ordinary component ... One distributor I checked lists one of these that's able to stand 24 volts on it, but that product costs $35 apiece, you have to order at least 100 of them at a time, and they take 2 weeks to get.
Also, IF you can charge this animal to 24 volts, it will hold 864J of energy. You'd probably have a hard time accomplishing this task with a bag of leftover AA batteries.
Answer:
<em>likely to decrease downstream in arid regions and increase downstream in temperate regions</em>
<em></em>
Explanation:
Arid regions are is a region with a severe lack of water, usually to the extent that affect the organisms living in the region. Arid regions are characterized by a very low depth of rainfall per year. Temperate region on the other hand experience more distinct seasonal change and wider temperature change. Temperate regions get a fairly large amount of rainfall per year.
In arid regions, the soil is very dry, and the rate of infiltration and percolation is high relative to the amount of rainfall available. The effect is that more water is infiltrated into the soil as you move downstream, leading to a decrease in the discharge of a stream as you move downstream. Most temperate region have soils that are usually saturated in the peak of the rainfall season, leading to a greater stream discharge as you move downstream.
The Hooke's law is a principal of physics that states that the force needed to extend or compress a spring by some distance x scales linearly with respect to that distance.
That just depends on the mass of the object and I think it will accelerate forwards