Answer:
Reactance
Explanation:
In an AC circuit, the capacitive reactance of a capacitor is given by:

where
f is the frequency of the AC current
C is the capacitance of the capacitor
The reactance of the capacitor tells somehow the "resistance" of the capacitor to the passage of current through it. In fact:
- When the frequency of the AC current is zero (this means, we are in regime of DC current), the reactance becomes infinite, and this is true because the capacitor does not let the current pass through it)
- When the frequency of the AC current tends to infinite, the reactance becomes zero, and this is true because in this case the current changes direction so fast that the capacitor has not enough time to "block" the current, so the current almost no feels the presence of the capacitor.
A then B, as everything is made of energy and energy pushes the electro magnetic waves into the brain.
From areas of high potential to low potential. That is, high voltage to low voltage.
Answer:
Part a)

Part b)
Since the radius is decreasing so induced current will increase the flux through the coil
So it would be clockwise in direction
Explanation:
As we know that magnetic flux linked with the coil is given as

now the rate of change in flux is given as

now we know that circumference is decreasing at rate of 15 cm/s
so here we know the length of circumference as

So rate of change in circumference is


final length of circumference at t = 8 s

Part a)
Now the induced EMF is given as



Part b)
Since the radius is decreasing so induced current will increase the flux through the coil
So it would be clockwise in direction