The period of the pendulum is 8.2 s
Explanation:
The period of a simple pendulum is given by the equation:

where
L is the length of the pendulum
g is the acceleration of gravity
T is the period
We notice that the period of a pendulum does not depend at all on its mass, but only on its length.
For the pendulum in this problem, we have
L = 16.8 m
and
(acceleration of gravity)
Therefore the period of this pendulum is

#LearnWithBrainly
Answer:3.51
Explanation:
Given
Coefficient of Friction 
Consider a small element at an angle \theta having an angle of 
Normal Force

Friction 

and 







An object moving with constant velocity
In general, the quantity of heat energy, Q, required to raise a mass m kg of a substance with a specific heat capacity of <span>c </span>J/(kg °C), from temperature t1 °C to t2 °C is given by:
<span>Q </span>= <span>mc(t</span><span>2 </span><span>– t</span>1<span>) joules</span>
<span>So:</span>
(t2-t1) =Q / mc
<span>As we know:
Q = 500 J </span>
<span>m = 0.4 kg</span>
<span>c = 4180 J/Kg </span>°c
<span>We can take t1 to be 0</span>°c
t2 - 0 = 500 / ( 0.4 * 4180 )
t2 - 0 = 0.30°c
Step 1: list known info
distance(change in position (Δx))= 18m+22m= 40m
time= 20 seconds
Step 2 :solve for velocity
velocity= Δx÷time
v= 40/20= 2m/s
Answer: the velocity is 2 meters per a second (m/s)