Answer:
a) E = 0.0048 Volts
b) dA/dt = - 0.002285 m²/s
Explanation:
Given:
Area, A = 0.020 m²
Rate of change of magnetic field, dB/dt = 0.24 T/s
a) The magnitude of the emf induced (E) is given as:
E= A × (dB/dt)
on substituting the values in the above equation, we get
E = (0.020 m²) × (0.24 T/s)
or
E = 0.0048 Volts
b) Now, The induced emf when both the area and the magnetic field is varying
we have
E = B(dA/dt) + A(dB/dt)
Now, for the given case induced emf is zero i.e E = 0 and magnetic field B = 2.1 T
thus,
0 = (2.1 T)(dA/dt) + (0.020 m2)(0.24 T/s)
dA/dt = - 0.002285 m²/s
Hence, the area should be decreased at the rate of 0.002285 m²/s
Answer:
6.7 × 
Explanation:
Initial P = Final P
(1.8 × 0) + (.0075 × 0) = (1.8 × x) + (.0075 × 16)
-.12 + 1.8x
x = .0067
Answer:
<em>The final speed of the vehicle is 36 m/s</em>
Explanation:
<u>Uniform Acceleration</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
The vehicle starts from rest (vo=0) and accelerates at a=4.5 m/s2 for t=8 seconds. The final speed is:


The final speed of the vehicle is 36 m/s
An example of a high specific heat is water’s specific heat, which requires 4.184 joules of heat to increase the temperature of 1 gram of water 1 degree Celsius. Scientifically, water’s specific heat is written as: 1 calorie/gm °C = 4.186 J/gm °C.