Answer:
the magnitude of the force that the wire will experience = 1.8 N
Explanation:
The force on a current carrying wire placed in a magnetic field is :
F = Idl × B
where:
I = current flowing through the wire
dl = length of the wire
B = magnetic field
We can equally say that :

where : sin θ is the angle at which the orientation from the magnetic field to the wire occurs = 30°
Then;

Given that:
L = 20 cm = 0.2 m
I = 6 A
B = 3 T
θ = 30°
Then:
F = 3 × 6 × 0.2 sin 30°
F = 1.8 N
Therefore, the magnitude of the force that the wire will experience = 1.8 N
Answer:
It depends if they have the same lightbulb in them.
Explanation:
Answer:
filament bulb, filament lamp
Explanation:
It is gravity¿ what is the question?
Answer:
Explanation:
There are different theories and evidence about the big bang, in this case, we're going to see three evidence.
The galaxies are moving from us, this means space is expanded, this in consequence Big Bang's explosion.
The cosmic microwave background radiation is related to the early warmth of the universe.
The observed abundance of hydrogen, helium, deuterium, lithium, these are checked from the spectra of the oldest stars.