This problem is looking for the minimum value of μs that is
necessary to achieve the record time. To solve this problem:
Assuming the front wheels are off the ground for the entire
¼ mile = 402.3 m, the acceleration a = µs·9.8 m/s².
For a constant acceleration, distance = 402.3
m = 1/2at^2 = 804.6 m / (4.43 s)^2 = a = µs·9.8 m/s^2
µs = 804.6 m / (4.43s)^2 / 9.8 m/s^2 = 4.18
It is correct! good job :)
Answer:
Explanation:
Work = Force times displacement. Therefore,
W = 3150(75.5) so
W = 238000 N*m
Answer:
21.21 m/s
Explanation:
Let KE₁ represent the initial kinetic energy.
Let v₁ represent the initial velocity.
Let KE₂ represent the final kinetic energy.
Let v₂ represent the final velocity.
Next, the data obtained from the question:
Initial velocity (v₁) = 15 m/s
Initial kinetic Energy (KE₁) = E
Final final energy (KE₂) = double the initial kinetic energy = 2E
Final velocity (v₂) =?
Thus, the velocity (v₂) with which the car we travel in order to double it's kinetic energy can be obtained as follow:
KE = ½mv²
NOTE: Mass (m) = constant (since we are considering the same car)
KE₁/v₁² = KE₂/v₂²
E /15² = 2E/v₂²
E/225 = 2E/v₂²
Cross multiply
E × v₂² = 225 × 2E
E × v₂² = 450E
Divide both side by E
v₂² = 450E /E
v₂² = 450
Take the square root of both side.
v₂ = √450
v₂ = 21.21 m/s
Therefore, the car will travel at 21.21 m/s in order to double it's kinetic energy.
Answer:
Height of cliff = S = 20 m (Approx)
Explanation:
Given:
Initial velocity = 8 m/s
Distance s = 16 m
Starting acceleration (a) = 0
Computation:
s = ut + 1/2a(t)²
16 = 8t
t = 2 sec
Height of cliff = S
Gravitational acceleration = 10 m/s
S = 1/2a(t)²
S = 1/2(10)(2)²
Height of cliff = S = 20 m (Approx)