using the law of refraction, the incidence is equal to the reflection, but not refraction
Answer:
Explanation:
Given:
- Mass of 1st body =

- Mass of 2nd body =

To Find:
- Magnitude of gravitational force
Solution:
Here, we have a formula
<u>Substituting the values</u>




Know More:
The applied formula for the above solution is

where,
- F
= Gravitational force - G = Gravitational constant
- M
= mass of 1st body - M
= mass of 2nd body - r = distance between two bodies
Answer:
Spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Explanation:
Physically speaking, stress is equal to the axial force divided by effective transversal area of spring. In addition, springs have usually a linear relationship between stress and strain in <u>elastic region</u>, since they are made of ductile materials. Axial force is directly proportional to axial stress, which is also directly proportional to axial strain.
Then, if force is greater than force associated with elastic limit of the spring, then spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Answer:
0.195 m
Explanation:
Speed is distance moved per unit time, expressed as s=d/t and making d the subject of the formula then d=st
Where d is distance/depth moved, s is rhe speed of waves and t is time in seconds.
Substituting s with 1300 m/s and t with 0.00015 s then the depth of metal segment will be
D=1300*0.00015=0.195 m
Therefore, the depth is equivalent to 0.195 m
Answer:
4276.98 years
Explanation:
t = age of the sample in numbers of years
T = half life of the carbon-14 isotope = 5730 yrs
λ = decay constant of carbon-14
decay constant is given as



A₀ = activity of Carbon-14 in living plants
A = activity of Carbon-14 after time "t" = (0.596) A₀
Using the equation



t = 4276.98 years