Electronegativity is your answer.
Answer:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
Explanation:
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
Read more on Brainly.com - brainly.com/question/1832586#readmore
Answer:
It becomes a positive ion and its radius decreases
Explanation:
As per the Octet rule, Barium has 2 electrons in its outermost shell. When it loses the two electron it gains two positive charge i.e Ba2+. As the barium loses the two electron from its outermost shell, the outermost shell becomes vacant and thus is no more considered as a part of atomic geometry of the barium atom and since the outermost shell is considered negligible the radius of barium atom reduces automatically.
Answer : The correct option is, (b) 0.087
Explanation :
The formula used for relative saturation is:

where,
= partial pressure of ethyl acetate
= vapor pressure of ethyl acetate
Given:
Relative saturation = 50 % = 0.5
Vapor pressure of ethyl acetate = 16 kPa
Now put all the given values in the above formula, we get:


Now we have to calculate the molar saturation.
The formula used for molar saturation is:

and,
P(vapor free) = Total pressure - Vapor pressure
P(vapor) =
= 8 kPa
So,
P(vapor free) = 100 kPa - 8 kPa = 92 kPa
The molar saturation will be:


Therefore, the molar saturation is 0.087
It is C that is the most testable hypotheses