D. Air molecules touch the warm ground, heating them up
The complete balanced chemical
equation is:
4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g)
In statement form: 4mol NH3 reacts with 5 mol O2 to produce 6
mol H2O
First let us find for the limiting reactant:
>molar mass NH3 = 17 g/mol
moles NH3 = 54/17 = 3.18 mol NH3
This will react with 3.18*5/4 = 3.97 mol O2
>molar mass O2 = 32g/mol
moles O2 = 54/32 = 1.69 mol O2
We have insufficient O2 therefore this is the limiting
reactant
From the balanced equation:
For every 5.0 mol O2, we get 6.0 mol H2O, therefore
moles H2O formed = 1.69
mol O2 * 6/5 = 2.025 mol
Molar mass H2O = 18g/mol
<span>mass H2O formed = 2.025*18 = 36.45 grams H2O produced</span>
Answer:
The answer to your question is P = 1.357 atm
Explanation:
Data
Volume = 22.4 L
1 mol
temperature = 100°C
a = 0.211 L² atm
b = 0.0171 L/mol
R = 0.082 atmL/mol°K
Convert temperature to °K
Temperature = 100 + 273
= 373°K
Formula

Substitution

Simplify
(P + 0.0094)(22.3829) = 30.586
Solve for P
P + 0.0094 = 
P + 0.0094 = 1.366
P = 1.336 - 0.0094
P = 1.357 atm
Well, we need to find the ratio of Al to the other reactant.
Al:HCl = 1:3
--> this means that for every 1 Al used, you have to use 3 HCl.
6*3 = 18 moles of HCl needed to fully react with 6 moles of Al. Since 13<18, HCL is the limiting reactant.
The ratio of HCl:AlCl = 3:1
13/3 = 4.3333...
The final answer is HCl is the limiting reactant with 4.3 moles of AlCl3 able to be produced.
Hope this helps!!! :)
Answer: when reactants and products are gases at STP.
Justification:
1) STP stands for standard temperature (0°) and pressure (1 atm).
2) According to the kinetic molecular theory of the gases, and as per Avogadro's principle, equal volumes of gases, at the same temperature and pressure, have the same number of molecules.
3) Since the coefficients in a balanced chemical equation represent number of moles, when reactants and products are gases at the same temperature and pressure, the mole ratios are the same that the volume ratios, and then the coefficients of the chemical equation represent the volume ratios.