1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
12

An object elongates from a length of 45 cm to a length of 55 cm. The percent strain is

Physics
1 answer:
suter [353]3 years ago
5 0

Answer:

22%

Explanation:

55 - 45 = 10

10/45 simplifies to 2/9

2/9 = 0.22222... so 22.22% (rounded 22%)

You might be interested in
A mass MM uniform solid cylinder of radius RR and a mass MM thin uniform spherical shell of radius RR roll without slipping. If
vampirchik [111]

Answer:

vcyl / vsph = 1.05

Explanation:

  • The kinetic energy of a rolling object can be expressed as the sum of a translational kinetic energy plus a rotational kinetic energy.
  • The traslational part can be written as follows:

       K_{trans} = \frac{1}{2}* M* v_{cm} ^{2}  (1)

  • The rotational part can be expressed as follows:

       K_{rot} = \frac{1}{2}* I* \omega ^{2}  (2)

  • where I = moment of Inertia regarding the axis of rotation.
  • ω = angular speed of the rotating object.
  • If the object has a radius R, and it rolls without slipping, there is a fixed relationship between the linear and angular speed, as follows:

       v = \omega * R (3)

  • For a solid cylinder, I = M*R²/2 (4)
  • Replacing (3) and (4)  in (2), we get:

       K_{rot} = \frac{1}{2}* \frac{1}{2} M*R^{2} * \frac{v_{cmc} ^{2}}{R^{2}} = \frac{1}{4}* M* v_{cmc}^{2}  (5)

  • Adding (5) and (1), we get the total kinetic energy for the solid cylinder, as follows:

       K_{cyl} = \frac{1}{2}* M* v_{cmc} ^{2}  +\frac{1}{4}* M* v_{cmc}^{2}  =  \frac{3}{4}* M* v_{cmc} ^{2} (6)

  • Repeating the same steps for the spherical shell:

        I_{sph} = \frac{2}{3} * M* R^{2} (7)  

       K_{rot} = \frac{1}{2}* \frac{2}{3} M*R^{2} * \frac{v_{cms} ^{2}}{R^{2}} = \frac{1}{3}* M* v_{cms}^{2}  (8)

      K_{sph} = \frac{1}{2}* M* v_{cms} ^{2}  +\frac{1}{3}* M* v_{cms}^{2}  =  \frac{5}{6}* M* v_{cms} ^{2} (9)

  • Since we know that both masses are equal each other, we can simplify (6) and (9), cancelling both masses out.
  • And since we also know that both objects have the same kinetic energy, this means that (6) are (9) are equal each other.
  • Rearranging, and taking square roots on both sides, we get:

       \frac{v_{cmc}}{v_{cms}} =\sqrt{\frac{10}{9} } = 1.05 (10)

  • This means that the solid cylinder is 5% faster than the spherical shell, which is due to the larger moment of inertia for the shell.
3 0
3 years ago
A ball rolls 12m in 2.0s. What is the ball’s average velocity?
USPshnik [31]

Answer:

6 m/s

Explanation:

12m / 2s = 6 m/s

Hope that's the answer you seek.

5 0
3 years ago
How the behavior of waves is affected by a medium
Schach [20]
The medium determines the speed of the wave traveling in it, which also can have a number of other effects, including how much the wave bends (refracts), whether it reflects, etc.
Because waves move through space, they must have a velocity. The velocity of a wave is a function of the type of wave, and the medium it travels through. Electromagnetic waves moving through a vacuum, for instance, travel at roughly 3 x
10
8
m/s. This value is so famous and common in physics it is given its own symbol, c.
3 0
3 years ago
A fire engine is moving south at 35 m/s while blowing its siren at a frequency of 400 Hz.
vodomira [7]

To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as

f_d= f_s \frac{(v+v_d)}{(v-v_s)}

Here,

f_d=frequency received by detector

f_s=frequency of wave emitted by source

v_d=velocity of detector

v_s=velocity of source

v=velocity of sound wave

Replacing we have that,

f_d = 400(\frac{(343+18)}{(343-35)})

f_d=422 Hz

Therefore the frequencty that will hear the passengers is 422Hz

8 0
4 years ago
The potential difference across a variable resistor is 11V and the current flowing through it is 0.4A.
klemol [59]
The resistance is 27.5 ohms
5 0
3 years ago
Read 2 more answers
Other questions:
  • A teacher performing demonstration finds that a piece of cork displaces 23.5 ml of water. The piece of cork has a mass 5.7 g. Wh
    10·1 answer
  • The wires in a household lamp cord are typically 3.5 mm apart center to center and carry equal currents in opposite directions.
    5·1 answer
  • After pollination where does a seed grow in a flower?
    5·1 answer
  • How many neutrons does element X have if its atomic number is 39 and its mass number is 79?
    6·1 answer
  • Find the missing number for each unit rate? 10/2 =?/1 and 16/4=?/1
    14·1 answer
  • If the radiant energy from the Sun comes in as a plane EM wave of intensity 1340 W/m2, calculate the peak values of E and B
    12·1 answer
  • HELPPPP WILL MARK B IF CORRECT!!!!
    9·2 answers
  • I need help!!!! I don’t understand physical science at all.
    13·1 answer
  • What is the water cycle ?
    11·2 answers
  • What force is affected when the distance between two objects remains the same and the mass of each object is doubled?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!