In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
Try this option, the answers are marked with colour.
Answer:

Explanation:
Considering an object that moving about in a circular path, the equation for such centripetal force can be computed as:

The model for the person can be seen in the diagram attached below.
So, along the horizontal axis, the net force that is exerted on the person is:

Dividing both sides by "m"; we have :

Making "v" the subject of the formula: we have:


So, when
= 0; the velocity is maximum
∴




Hence; the maximum walking speed for the person is 
Answer:
V = 493421.05 [gal]
Explanation:
This is a problem that consists of handling units, we can calculate by first-hand the volume, then convert units from cubic meters to gallons.
V = 50 * 25 * 1.5
V = 1875 [m^3]
Now we need to convert units, using the proper conversion factor.
![1875[m^3]*\frac{1000lt}{1m^3} *\frac{1gal}{3.8lt} \\493421.05[gal]](https://tex.z-dn.net/?f=1875%5Bm%5E3%5D%2A%5Cfrac%7B1000lt%7D%7B1m%5E3%7D%20%2A%5Cfrac%7B1gal%7D%7B3.8lt%7D%20%5C%5C493421.05%5Bgal%5D)
Answer:
<em>The rebound speed of the mass 2m is v/2</em>
Explanation:
I will designate the two masses as body A and body B.
mass of body A = m
mass of body B = 2m
velocity of body A = v
velocity of body B = -v since they both move in opposite direction
final speed of mass A = 2v
final speed of body B = ?
The equation of conservation of momentum for this system is
mv - 2mv = -2mv + x
where x is the final momentum of the mass B
x = mv - 2mv + 2mv
x = mv
to get the speed, we divide the momentum by the mass of mass B
x/2m = v = mv/2m
speed of mass B = <em>v/2</em>