Answer:
the required revolution per hour is 28.6849
Explanation:
Given the data in the question;
we know that the expression for the linear acceleration in terms of angular velocity is;
= rω²
ω² =
/ r
ω = √(
/ r )
where r is the radius of the cylinder
ω is the angular velocity
given that; the centripetal acceleration equal to the acceleration of gravity a
= g = 9.8 m/s²
so, given that, diameter = 4.86 miles = 4.86 × 1609 = 7819.74 m
Radius r = Diameter / 2 = 7819.74 m / 2 = 3909.87 m
so we substitute
ω = √( 9.8 m/s² / 3909.87 m )
ω = √0.002506477 s²
ω = 0.0500647 ≈ 0.05 rad/s
we know that; 1 rad/s = 9.5493 revolution per minute
ω = 0.05 × 9.5493 RPM
ω = 0.478082 RPM
1 rpm = 60 rph
so
ω = 0.478082 × 60
ω = 28.6849 revolutions per hour
Therefore, the required revolution per hour is 28.6849
Answer:
a) 2.41 km
b) 38.8°
Questions c and d are illegible.
Explanation:
We can express the displacements as vectors with origin on the point he started (0, 0).
When he traveled south he moved to (-3, 0).
When he moved east he moved to (-3, x)
The magnitude of the total displacement is found with Pythagoras theorem:
d^2 = dx^2 + dy^2
Rearranging:
dy^2 = d^2 - dx^2


The angle of the displacement vector is:
cos(a) = dx/d
a = arccos(dx/d)
a = arccos(3/3.85) = 38.8°
A textbook would hit the ground first
Factors:
-Textbook weighs most
-Pillow is flat and fluffy not very aerodynamic) also is very light
-Paper airplane will glide to the ground do to its wings and will hit the ground last
Neap tide is when sun and moon are aligned at 90 degrees
spring tide is when sun and moon are in line 180 degrees.
Answer:
Δ L = 2.57 x 10⁻⁵ m
Explanation:
given,
cross sectional area = 1.6 m²
Mass of column = 26600 Kg
Elastic modulus, E = 5 x 10¹⁰ N/m²
height = 7.9 m
Weight of the column = 26600 x 9.8
= 260680 N
we know,
Young's modulus=
stress = 
= 
= 162925
strain = 
now,



Δ L = 2.57 x 10⁻⁵ m
The column is shortened by Δ L = 2.57 x 10⁻⁵ m